

Consulting Engineers and Scientists

PHASE III ESA & SOIL MANAGEMENT PLAN

RIVERSIDE APARTMENTS NORTH OLSON DRIVE ANSONIA, CONNECTICUT

February 2016

PAYNE No.: 15.127/001

Prepared For:

Ansonia Housing Authority 36 Main Street Ansonia, Connecticut 06401

Prepared By:

Payne Environmental, LLC 85 Willow Street New Haven, Connecticut 06511 Phone 203.865.1285 Facsimile 203.865.1286 Phase III ESA & Soil Management Plan

Riverside Apartments North Olson Drive Ansonia, Connecticut

Signatures of Report Authors

Payne Environmental LLC has prepared this report. The following personnel are the principal authors of this report and have reviewed this report for accuracy, content and quality of presentation. Request for information regarding the content of this report should be directed to these individuals.

lyn

Neil G. Payne, *PhD, CHMM, LEP* President

2/27/2016

Date

Hail R. Simon

Gail R. Simon

2/27/2016

Date

TABLE OF CONTENTS

1.0	Introduction	5
1.1	General	5
1.2	Overview of Proposed Actions	5
1.3	Site History	6
1.4	Environmental Setting	6
1.5	Regulatory Setting	8
1.6	Previous Environmental Investigations	9
1.7	Phase III ESA – January 2016	10
1	.7.1 Drilling Activities	10
1	.7.2 Installation of Groundwater Monitoring Wells	11
1	.7.3 Quality Assurance/Quality Control	12
1	.7.4 Results of Investigation	13
1.8	Format of SMP	14
2.0 C	Options to Address Soil Management	16
Opt	tion 1: Excavation and On-site Reuse (RDEC Compliant Soils)	16
Opt	tion 2: Excavation and Off-site Reuse/Treatment/Disposal	16
Opt	ion 3: Render Polluted Fill/Soil Inaccessible as Defined by the RSRs	16
2.1	Recommended Options	17
3.0	Soil Management	18
3.1	Roles and Responsibilities of Project Team	18
3	.1.1 Project Team	18
3	1.2 Roles and Responsibilities	18
3.2	Soil Excavation/Soil Disposition	19
3	.2.1 Excavation	19
3	.2.2 Polluted Fill/Soil for Off-Site Reuse	20
3	.2.3 Imported Soil	21
3.3	Execution	21
3	.3.1 Excavated Material Classification	21
3	.3.2 Excavation	22
3	.3.3 Material Handling Requirements	23
3	.3.4 Temporary Stockpile Area Documentation	23
3	.3.5 Off-Site Reuse of Excavated Materials	24
4.0	Site Excavation Work Approvals/Documentation	25
4.1	Temporary Soil Staging Area	25
4.2	Approval for Off-Site Reuse of Polluted Fill/Soil at Other Facilities	25
5.0	Anticipated Project Schedule	26

List of Figures

Figure	Title
FIGURE 1 FIGURE 2	Site Location Plan

List of Tables

Table	Title
TABLE 1	Soil Analytical Results
TABLE 2	Groundwater Analytical Results

List of Attachments

Attachment	Title
ATTACHMENT A	Figures
ATTACHMENT B	Tables
ATTACHMENT C	Boring Logs
ATTACHMENT D	Laboratory Data

1.0 Introduction

1.1 General

This *Phase III ESA & Soil Management Plan* (herein referred to as the SMP) summarizes the soil management actions proposed for redevelopment to be undertaken at the Riverside Apartment North located on Olson Drive In Ansonia, Connecticut (see Figure 1 in Attachment A). The proposed soil management actions at the site are collectively referred to as the Remedial Activity and will be conducted after reasonable opportunity for review and comment by the Owner, Construction Manager and their general contractor.

This SMP focuses on the technical aspects of the proposed remedial actions for which approval by a Connecticut Licensed Environmental Professional (LEP) may be required. Several other remedial action components (primarily related to the implementation of the remedial actions) are presented herein, although such information is presented in general terms. Several of the implementation components of the remedial actions (as presented in this SMP) are also subject to future modification either prior to and/or during execution of the remedial actions.

Modifications may occur as a result of field conditions (actual versus anticipated), project sequencing and logistics, availability of key equipment and materials, and other related changes that allow the Owner to improve upon the overall project performance, efficiencies, and schedule. The Owner's ability to identify and implement such modifications have been demonstrated on numerous occasions for remediation projects of similar scope and complexity over the several few years, and the Owner will draw from that experience to ensure that the response actions performed at the Site are equally successful.

1.2 Overview of Proposed Actions

The primary remedial action for the site involves the removal of polluted fill and underlying native soils. As presented in this SMP, it is anticipated that excess fill/soils will be excavated during planned constructions activities, which will require the reuse of this material onsite and/or treated/disposed of at an offsite permitted facility.

The proposed remedial actions are primarily related to the presence of lead, arsenic and/or polycyclic aromatic hydrocarbons (PAHs) in surficial soils. Solid waste debris fragments, including wood, brick, masonry, concrete slabs, metal, and other domestic wastes may also be encountered during soil excavation activities.

Included in this SMP is an anticipated schedule related to the proposed action.

1.3 Site History

The site includes the parcel and improvements known as the Riverside Apartments North, located at 106-165 Olson Drive in the City of Ansonia, New Haven County, Connecticut at 41°20'41.69" N latitude and 73°04'54.82" W longitude. This portion of the site is identified in the Ansonia Assessor's Office as parcel 0310068.8.

The site is located between High Street and Olson Drive. Olson Drive and the Naugatuck River abuts the site easterly. According to City Assessor records, the site is located within a multi-family district (GA zone) and the City Center Zoning District. The site is located at an elevation of approximately 36 feet above sea level (National Geodetic Vertical Datum of 1929). The topography of the site is generally level, with minor downward sloping on moving from northwest to the southeast.

The approximately 3-acre parcel is improved with four (4) multi-family apartment buildings and a new boiler house. The residential buildings were constructed circa 1960 and are currently in a state of disrepair. The boiler house was constructed circa 2010-2011 as part of a mechanical decentralization project. Site plans are provided in Attachment A.

The existing residential apartment buildings were constructed circa 1963. Olson Drive does not appear listed prior to 1963. Based on aerial photographs and Sanborn mapping Jersey Street was formerly located between High Street and Lester Street which consisted of several residential and commercial structures prior to the development of Riverside Apartments. The historical structures were reportedly destroyed in 1955 during the Naugatuck River flood. The site has undergone significant filling since the great flood as part of an overall flood protection system designed and implemented by the Army Corp of Engineers.

1.4 Environmental Setting

The site is located at an elevation of approximately 36 feet above sea level (National Geodetic Vertical Datum of 1929). The topography of the site is generally level, with minor downward sloping on moving from northwest to the southeast.

The Site is located within the lapetos, Connecticut Valley Synclinorium. The subsurface geology at the subject Site is reported to be gray to spotted, medium to coarse grained, foliated gneiss. Bedrock was not encountered during the investigation.

Soils in this area generally are classified as urban land. This map unit consists of areas where urban structures cover more than 85 percent of the surface and the map unit is predominantly artificial fill and Udorthents, which are well drained to excessively drained soils mainly near urban areas.

Based on environmental investigations conducted on the south abutter (Riverside Apartments Southside), that site is overlain with two (2) distinct fill layers. The upper layer, generally observed to range in 2-12 feet in thickness, consists of a light-medium brown sandy fill layer with varying percentages of silt and gravel. This upper fill layer is underlain with a darker sandy fill material, consisting of ash, coal, brick, glass, asphalt, plastic and concrete. The thickness of this fill layer ranges from 2-8 feet. Natural brown fine-to-coarse sand with cobbles and gravel are encountered below the fill layers, at depths typically ranging from 6-20 feet below ground surface.

Groundwater in the general vicinity of the subject site is classified by CTDEEP as GA groundwater. The GA classification is defined by CTDEEP as groundwater within the area of private water supply wells or an area with the potential to provide water to public or private supply wells. The CTDEEP presumes that groundwater in a GA area is, at a minimum, suitable for drinking or other domestic uses without treatment.

The groundwater flow direction based on surface topography and monitoring well data, is inferred to be generally east/southeast towards the Naugatuck River, which is located within 100 feet of the Site to the east. Depth to groundwater at the site is expected to be approximately 20 feet below ground surface, based on environmental investigations conducted on the south abutter.

The Site is located in the Naugatuck River Sub Regional Basin of the Naugatuck Complex, which is tributary to the Housatonic River. The nearest natural surface water body is the water body is the Naugatuck River, essentially abutting the property easterly (Figure 1).

According to the CTDEEP, the surface water quality of the Naugatuck River classified as B. Class B surface waters are not potential drinking water supplies; however, designated uses include fish and wildlife habitat, recreational uses, agricultural and industrial supply, and other legitimate uses including navigation.

The property lies with flood zone X (areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than one foot or within drainage areas less than one square mile; and areas protected by levees from 1% annual chance flood), as depicted on Flood Insurance Rate Map No. 09009C0404H, panel 404 of 635 with an effective date of December 17, 2010.

Based on site observations and survey of record mapping, there are no inland wetlands on the subject site.

1.5 Regulatory Setting

Analytical results for the soil data obtained at the site were compared to the Remediation Standard Regulations (RSRs) developed by the Department of Energy & Environmental Protection (DEEP). The site is currently not in a regulatory program where the RSRs apply. Although the RSRs are not applicable to the site, they were utilized as a guideline for a reasonable standard of care in evaluating soil data and potential risk issues.

The DEEP's intent in developing these regulations is to define minimum remediation performance standards and specific numeric cleanup criteria, and to clearly specify a process for establishing an alternative site-specific standard. Although the RSRs do not specifically apply to this site, they will be used here as the standard of care in evaluating the environmental compliance status and risk issues at the site, to be protective of human health and the environment.

The regulatory requirements associated with the two primary goals of site investigations are presented in the following paragraphs.

(1) To determine whether the identified AOCs are "Release Areas" as defined in the RSRs.

A Release Area is defined in Section 22a-133k-1 of the RSRs as "...the land at and beneath which polluted soil is located as a result of a release." Polluted soil as defined in the RSRs as, "...soil affected by a release of a substance at a concentration above the analytical detection limit for such substance." If there is no polluted soil present in an AOC, or if polluted soil is present but can be demonstrated not to be the result of a release associated with the AOC, then the AOC is not a release area under the RSRs. This metric is the basis for conclusions regarding release area status in this report.

(2) To provide information with which to validate or modify the conceptual site model for the property, which in turn provides for an understanding of the potential risk of impact to human health or the environment from site conditions.

This objective is addressed in part by comparing the results of soil sample analysis with applicable RSR criteria. The RSRs provide different remediation target criteria for constituents based primarily on the variables of (1) groundwater classification beneath and in the area of the property, and (2) whether the property is dedicated to residential or industrial/commercial use.

Groundwater in the general vicinity of the subject site is classified by CTDEEP as GA groundwater. The GA classification is defined by CTDEEP as groundwater within the

area of private water supply wells or an area with the potential to provide water to public or private supply wells. The CTDEEP presumes that groundwater in a GA area is, at a minimum, suitable for drinking or other domestic uses without treatment.

Section 22a-133k-2 of the RSRs establishes two (2) criteria for soil:

- Direct Exposure Criteria (DEC) that seek to protect humans from potential risks associated with direct exposure to contaminated soils; and
- Pollutant Mobility Criteria (PMC) that are designed to protect groundwater from contaminants that may leach from soil to the groundwater.

1.6 Previous Environmental Investigations

Multiple environmental investigations and remedial activities have been conducted at the site for the period 1999-2014. A brief summary of these investigations is provided herein:

Phase I ESA, Riverside Apartments North, 106-165 Olson Drive, Ansonia, Connecticut, prepared by Payne Environmental LLC, dated April 10, 2013:

PAYNE conducted a Phase I ESA for the Site, which identified three AOCs: (1) Potential for polluted fill; (2) Potential releases from pole-mounted transformers located on the site; and (3) Potential releases of petroleum-related fluids to surficial soils may potentially have occurred due to leakage from the hydraulic fluid reservoir or associated hydraulic lines.

PAYNE recommended that a Phase II ESA be performed at the site to evaluate identified RECs in order to determine if there had been a release at the site.

Phase II ESA, Riverside Apartments North, 106-165 Olson Drive, Ansonia, Connecticut, prepared by Payne Environmental LLC, dated August 2013:

The Phase II ESA was conducted in order to evaluate the RECs identified in PAYNE's April 2013 Phase I ESA. The scope of work consisted of the following items:

- Pre-Drilling Tasks & Utility Mark-out, including development of a site-specific Health & Safety Plan (HASP);
- Development of a Soil Sampling and Analysis Plan (SSAP);
- Installation of six (6) surficial soil borings;
- Installation of five (5) soil borings to depths up to 20 feet below grade utilizing direct-push technology;

- Laboratory analysis of soil samples for target compounds;; and
- Preparation of a Phase II ESA Report.

A total of three (3) AOCs/RECs were identified for the subject site. These AOCs included AOC-1: Polluted Fill; AOC-2: Hydraulic Trash Compactors; and AOC-3: Pole-Mounted Transformers.

Of the three (3) AOCs, two (2) AOCs (AOC-, AOC-2) were determined to be Release Areas and warrant additional investigation in the form of a Phase III ESA in order to determine the degree and extent of contamination within each release area. No release was observed for AOC-3, pole-mounted transformers.

The data from Phase II testing indicated that release areas were identified for AOC-1 and AOC-2 and that petroleum hydrocarbons, lead, arsenic, PCBs and/or PAHs were present in surficial soils and deeper fill materials at concentrations above applicable RSR criteria. In addition

Based on planned redevelopment of the site, PAYNE recommended that a Phase III ESA sampling program be developed and implemented. The primary objectives of this Phase III ESA are to conduct investigations to define the nature and extent of identified release areas and to provide a basis for making critical decisions regarding conditions that do not comply with the Remediation Standard Regulations (RSRs).

1.7 Phase III ESA – January 2016

PAYNE conducted a targeted soil sampling program in order to collect sufficient data to render options for the reuse and/or offsite disposal of fill and native soils anticipated to be excavated and/or disturbed as part of planned redevelopment activities. These specifically included soils located within proposed building foundations. Soils in other areas of the site were sufficiently characterized in previous investigations.

1.7.1 Drilling Activities

Between January 6-14, 2016, PAYNE field personnel mobilized to the site to oversee the installation of soil borings. For this work, PAYNE co-collected soil samples during a geotechnical study performed by GZA GeoEnvironmental, Inc. (GZA), who was retained by Tise Design Associates (TDA) to conduct a subsurface investigation for the proposed housing redevelopment at the Site.

The proposed development will consist of one- to three-story, wood-framed, residential apartment units. A total of 54 housing units in 29 new buildings are planned. Associated

asphalt-paved parking, drive, and landscape areas are also proposed. The project site is divided into two parcels, a North Parcel and a South Parcel, with High Street dividing the two parcels.

The project includes demolition of existing structures on the north parcel. The north parcel will have 14 new buildings. Finished floor elevations for the new structures vary between El. 35.3 ft. and El. 37.8 ft. Proposed cut/fill are at or near existing grades. The south parcel will have 15 new buildings. Finished floor elevations for the new structures vary between El. 32.0 and El. 35.5 ft. Proposed cut/fill are at or near existing grades. It is our understanding that no basements are planned in any of the proposed buildings.

Soil samples collected were obtained utilizing standard hollow-stem auger drilling techniques; Welti installed a total of ten (10) soil borings (B-14 through B-21) within the footprints of proposed residential structures. PAYNE collected a total of nineteen (19) soil samples for subsequent laboratory analysis for target compounds. Drilling was conducted by Hardiman Company & Associates, Inc. of Shelton, Connecticut.

Soil boring locations are depicted in Figure 2 (Attachment A); test boring logs are provided in Attachment C.

Fill was encountered in all of the test borings and ranged in depth from the existing ground surface to 17 feet below existing grades. Fill generally consisted of granular soils with varying amounts of silt, ash, cinders, concrete, asphalt, wood, brick fragments, and glass.

The granular soils consisted of sand with varying amounts of gravel and silt. It ranged in relative density from medium dense to very dense. At the time the test borings were taken, groundwater was encountered in all of the test borings, with the exception of test borings GZ-8, GZ-9, GZ-10, GZ-14, GZ-14A, GZ-14B, GZ-15, GZ-16, GZ-18, GZ-22, and GZ-23. Groundwater levels were at depths ranging from 19.5 to 23 feet below existing grades at the Site.

Select soil samples were subsequently submitted to Complete Environmental Testing, Inc. (Stratford, CT) for appropriate laboratory analyses, including polycyclic aromatic hydrocarbons (PAHs, Method 8270D) and RCRA 8 metals (Method 6020A). These parameters were selected in order to obtain relevant data for onsite soil reuse in Connecticut. CET is a Connecticut State-certified laboratory (CT# PH-0116).

1.7.2 Installation of Groundwater Monitoring Wells

Four (4) groundwater monitoring wells (MW-1, MW-2, MW-3 and MW-4) were installed to depths of 28-30 feet below grade utilizing hollow-stem auger drilling methods. Monitoring wells were constructed of two-inch diameter, threaded, flush-jointed,

polyvinyl chloride (PVC) well casing with slotted PVC screen (No. 10 screen). The bottom of each well was positioned to intercept the water table to capture any floating product and allow for seasonal fluctuations in water levels. In addition, wells were screened to deeper depths in order to allow for sufficient groundwater recovery and to screen for the potential of VOCs at deeper groundwater depths.

The annular space surrounding the well screen was filled with No. 1 Ottawa sand to an elevation one to two feet above the top of the screen. Above the sand, a bentonite seal was placed to seal the well from formation above. Soil boring spoils were used to backfill the remainder of the annular space. Finally, a concrete collar was poured around a flush-mounted, protective steel case with a locking cap to secure the well.

PAYNE personnel conducted groundwater sampling on January 31, 2016 utilizing lowflow sampling techniques. Prior to sampling, field measurements were made of the depth to groundwater surface and total depth of each overburden well. The measurement instrument (Solonist Model 101) was decontaminated with deionized, distilled water before introduction into each well.

Following field measurements and well purging, groundwater samples were collected after recording consistent field measurements of pH, conductivity, turbidity, dissolved oxygen and temperature. Field measurements were obtained with a Horiba U-22 water quality meter equipped with a Solonist U-22 flow cell.

A total of four (4) unfiltered groundwater samples were collected, stored in laboratorysupplied glassware and submitted for laboratory analysis for volatile organic compounds (USEPA Method 8260B). The samples were delivered to Complete Environmental Testing, Inc. (CET) of Stratford, CT for analysis. CET is a Connecticut State-certified laboratory (CT# PH-0116).

1.7.3 Quality Assurance/Quality Control

The DEEP finalized *Reasonable Confidence Protocols* (RCPs) in August 2006. These RCPs are guidelines for enhanced QA/QC procedures for analytical methods and reporting. The DEEP recommends that environmental professionals request that the laboratory follow the RCPs when producing data that is used as the basis of decisions regarding compliance with the RSRs.

PAYNE's QA/QC data validation consisted of a review Laboratory QA/QC Certification Form and confirmation of attainment of data quality objectives (i.e. applicable regulatory criteria). PAYNE reviewed the QA/QC data associated with the laboratory analyses conducted on all soil and groundwater samples. Data validation consisted of evaluating the one or more of the following items:

- Sample holding times
- Field, trip and/or laboratory blanks
- Field duplicate results
- Laboratory duplicate results
- Matrix spike/matrix spike duplicate results
- Laboratory control spike recoveries
- Surrogate spike recoveries

Although there were instances of non-compliance with the Reasonable Confidence Protocol (RCP), overall these non-compliance issues were minor and few. As a result, the analytical data were deemed adequate and usable for the intended purpose.

1.7.4 Results of Investigation

A summary of analytical results for constituents detected in soil and groundwater are presented in Table 1 Table 2, respectively (see Attachment B). Soil analytical results were compared to the Res. DEC and GAPMC of the RSRs, as described in Section 1.4 above. No volatile organic compounds were detected in groundwater samples.

The laboratory analytical reports for soil samples analyzed during this investigation are included as Attachment D to this report.

Polycyclic Aromatic Hydrocarbons (PAHs) - Soil

PAH-related constituents were detected above laboratory method detection limits in 16 of 19 soil samples, with exceedances of applicable RDEC observed in 11 soil samples.

RCRA 8 Metals - Soil

A total of 19 soil samples were submitted for laboratory analysis for RCRA 8 metals. Detected metals typically included arsenic, barium, cadmium, chromium, lead, mercury and selenium. All detected concentrations of metals were generally consistent in all samples and may be representative of background conditions, although this cannot be confirmed due to lack of proper control samples. All detections were observed to be well below applicable RDEC.

Volatile Organic Compounds - Groundwater

No VOCs were detected in the four (4) groundwater samples submitted for analysis, within laboratory method detection limits. No VOCs were detected in the trip blank, submitted as part of PAYNE's quality control program.

Data Quality Assessment

Data quality objectives (DQOs) are used to ensure that data is collected in a manner that permits it to be used to evaluate conditions at a site and support decisions based on those evaluations. Procedures used to ensure that the DQOs for this project were met include the following:

- Selection of analytical methods with appropriate detection limits
- Use of pre-determined sampling handling and custody procedures
- Use of pre-determined data management and documentation procedures
- Selection of sampling locations and COCs appropriate to the study area
- Use of Connecticut's soil VOC sampling procedure
- Use of Connecticut's RCP and laboratory QA/QC procedures

A data quality analysis (DQA) and data usability evaluation (DUE) were conducted on the samples collected during the soils investigation. The DQA/DUE was conducted in accordance with DEEP's *"Laboratory Quality Control Assurance and Quality Control, Data Quality Assessment, and Data Usability Evaluation Guidance Document"*, dated May 2009. All data were analyzed and evaluated by CET using DEEP's Reasonable Confidence Protocols (RCP), as referenced in DEEP's November 2007 guidance document entitled *"Reasonable Confidence Protocols"*.

A discussion of the non-conformities during the DUE is provided in Attachment C. Although the specified QA/QC performance criteria were reportedly not met by the laboratory during the soil analysis events, the laboratory datasets met the requirements for reasonable Confidence according to the Connecticut guidance document. Therefore, the results were concluded to be valid for their intended use as investigation and pre-characterization data.

1.8 Format of SMP

The remainder of this SMP is presented in four sections. The title and a brief overview of each section follow:

Section 2 – Options to address soil impacts

Section 3 – Soil Management

Section 4 - Site Excavation Work Approvals/Documentation

Section 5 - Project Schedule

Throughout this SMP, tables and figures are referenced to supplement the report text and provide more detailed information concerning various aspects of the proposed remedial action. In addition, several documents and reports related to the site are also available under separate cover for review. These reports provide an even greater level of detail should such information be desired (as appropriate, references to the prior documents will be provided within this SMP).

Copies of site figures are provided in Attachment A. Soil/groundwater data tables and laboratory data are provided in Attachments B & D, respectively.

2.0 Options to Address Soil Management

Options to reuse or dispose/treat excavated polluted fill and native soils generated during planned redevelopment are presented below.

The same remedial options will also be considered to address potential future soil disturbances in areas <u>outside</u> of planned redevelopment (i.e. future utility work, installation of other site improvements such as recreation areas; work undertaken by landscapers, etc...).

Option 1: Excavation and On-site Reuse (RDEC Compliant Soils)

All excess polluted soil and fill material with detected concentrations below laboratory detection limits or below the Residential Direct Exposure Criteria (RDEC) could be excavated and reused on-site at suitable locations without restriction. Based on the potential volume of polluted fill material and native soil that potentially contains concentrations of constituents exceeding the RDEC, this option is the most economically feasible for the site.

Excavated fill and native soils can be used as backfill at the site if it meets the physical criteria specified in the project documents.

Option 2: Excavation and Off-site Reuse/Treatment/Disposal

All excess polluted fill and native soil material with detected concentrations exceeding laboratory detection limits or the Residential Direct Exposure Criteria (RDEC) could be excavated and reused/treated/disposed off-site at a suitable receiving facility during site redevelopment activities. Based on the potential volume of polluted fill material and native soil that potentially contains concentrations of constituents exceeding the RDEC, this option does not appear to be economically feasible for the site.

Option 3: Render Polluted Fill/Soil Inaccessible as Defined by the RSRs

The RSRs define inaccessible soil as:

...polluted soil which is (A) more than four feet below the ground surface; (B) more than two feet below paved surface comprised of three inches of bituminous asphalt or concrete, which two feet may include the depth of any materials used as a sub-base for the pavement; (C) polluted fill beneath bituminous concrete or concrete surface comprised of a minimum of three inches of bituminous concrete or concrete if such fill is (i) polluted in excess of applicable direct exposure criteria only by semi-volatile substances or petroleum hydrocarbons that are normal constituents of bituminous concrete, (ii) polluted by metals in concentrations not in excess of two times the applicable direct exposure criteria, or (iii) any combination of the substances or limits identified in clause (i) or (ii) of this subparagraph; or (D) (i) beneath a building or (ii) beneath another existing permanent structure provided written notice that such structure will be used to prevent human contact with such soil has been provided to the Commissioner.

The redevelopment plan for the site has been evaluated to determine if it would be possible to leave excess polluted fill and/or native soil exceeding the RDEC in place or move the material to a location at the site to meet the inaccessible soil definition. This option may be appropriate if locations can be identified at the site where such fill/soils could be relocated.

2.1 Recommended Options

Subsurface sampling has identified polluted soil associated with fill and soil materials that were likely placed at the site at the time or prior to the development of the existing site. At this location, the soil has been found to contain metals and/or PAHs at concentrations exceeding laboratory detection limits and/or baseline numeric clean-up criteria published by DEEP.

Based on a preliminary review of the three (3) options discussed above, Options 1 and 3 appear to be the most feasible option to address excess polluted fill and native soil where there have been exceedances of the RDEC. In this case, polluted soils exceeding the RDEC would have to be placed in such a way as to render it inaccessible.

3.0 Soil Management

3.1 Roles and Responsibilities of Project Team

The purpose of this section is to identify the roles and responsibilities of individual project team members and procedures to be followed when handling potentially polluted site materials. In addition, the **General Contractor** shall be responsible for identification and compliance with all applicable Federal, State, and local rules, regulations, and laws related to worker health and safety, as well as permits or licenses for handling, storage, transportation, and disposal of soil, sediment, and groundwater.

3.1.1 Project Team

- Contractor
- Soil Transporter
- Engineer (Soil Management)
- Owner
- Construction Manager

3.1.2 Roles and Responsibilities

Environmentally-impacted fill and soil material is expected to be encountered during the project. Various members of the project team will be required to perform specific duties during site redevelopment activities.

The **Contractor** shall be responsible for the following:

- Providing all labor, materials, equipment, and other services required for handling, segregating, stockpiling, reusing, loading, transporting, and disposing of target material encountered during the performance of the work within the project area and/or earthwork located outside the project limits.
- Protecting the health of workers and individuals that enter the site and the general public.
- Minimizing additional impacts to the environment.

- Obtaining all Federal, State, and local permits required under various environmental, worker, and health-related regulations for the soil management.
- Schedule coordination with the Engineer, Owner, and Construction Manager.
- Coordinating communications with all subcontractors regarding soil management issues.
- Coordinating with the **Engineer** to establish and maintain temporary material stockpile areas, as applicable.
- Coordinating with the **Engineer** for the off-site reuse excess material at the approved receiving location.

The **Engineer** shall be responsible for the following:

• Periodically observe material encountered during performance of work for evidence of contamination, as described below.

The **Owner** shall be responsible for the following:

• Signing all bills of lading and other receiving facility requirements for excess target material transported from each Project Area (by **Owner** or duly authorized representative).

3.2 Soil Excavation/Soil Disposition

3.2.1 Excavation

Prior to the start of work, the **Contractor** shall prepare a Site Operations Plan in accordance with the project specifications. The Plan shall be approved by the **Engineer** prior to start of work.

Soil excavated to accommodate placement of building foundations, underground utilities, grading, and for other reasons will be segregated as polluted fill and native soils and temporarily stockpiled at the site for later reuse or direct-loaded onto trucks and transported to an approved receiving facility, as required.

During environmental investigations, groundwater was not encountered at depths of planned excess material removal. For the purpose of this SMP, we assume that no dewatering will be required.

3.2.2 Polluted Fill/Soil for Off-Site Reuse

The **Contractor** shall be responsible for communicating and coordinating with the **Owner** and **Construction Manager** the onsite reuse and/or offsite reuse/disposal of excess material at an approved receiving facility. **Contractor** shall coordinate with **Owner** to obtain generator signatures on bills of laden for transport of the material for offsite reuse/disposal.

Contractor will be responsible for assuring that soil to be reused/disposed off-site contains no free-draining liquid.

Contractor shall inform **Engineer** if the amount of polluted fill/soil may exceed initial estimates so that the **Engineer** can collect additional soil samples, if necessary. If excavated soil will be loaded directly into the trucks for off-site reuse, then soil samples may need to be collected and analyzed prior to the start of excavation in order to meet the testing requirements of the project (typically one sample every 500 cubic yards).

If visual observations of soil during excavation indicate the presence of unidentifiable physical or chemical characteristics, the **Engineer** shall indicate to the **Contractor** if soil samples are to be collected and analyzed. If additional soil analysis is warranted, waste characterization soil samples will be submitted to the laboratory by the **Engineer** for the analyses required by the disposal facility.

If additional soil analysis is warranted, waste characterization soil samples will be submitted to the laboratory by the **Engineer** for the following analyses at a minimum:

- VOCs by USEPA Method 8260
- Semi-VOCs by USEPA Method 8270
- ETPH by Connecticut's ETPH Method
- RCRA 8 Metals by USEPA Method Series 6000/7000
- PCBs by USEPA Method 8082

3.2.3 Imported Soil

As applicable, soil proposed to be imported shall be used at the site only after review of the results of chemical testing and approval by the **Engineer**. Soil samples will be submitted to a Connecticut-certified laboratory by the **Contractor** for the following analyses to characterize the off-site import material:

- VOCs by USEPA Method 8260
- Semi-VOCs by USEPA Method 8270
- ETPH by Connecticut's ETPH Method
- RCRA 8 Metals by USEPA Method Series 6000/7000
- PCBs by USEPA Method 8082
- Pesticides by USEPA Method 8081

Contractor must identify the source of the soil to be imported onto the site and collect one sample every 500 cubic yards of backfill material for analysis. This frequency may be reduced at the discretion of the **Engineer.** Soil must not contain concentrations of any constituent that exceed either the background concentration at the site or the ResDEC, whichever is lower, and be acceptable to the **Engineer.** No foreign material (including asphalt) is acceptable.

3.2.5 Regulatory Compliance

The **Contractor** shall conduct all work in accordance with the appropriate and relevant federal, state and local codes, ordinances, and regulations, related to worker health & safety, transportation of regulated or hazardous wastes, environmental law, and obtain all necessary permits. The **Contractor** is required to obtain local permits in order to initiate the work.

3.3 Execution

3.3.1 Excavated Material Classification

Following excavation of on-site materials, it is the responsibility of the **Contractor** to coordinate with the **Engineer** to identify the limits of material that is not suitable for the reuse as backfill at the project site. Shallow soils outside the pre-characterization area shall be observed for physical and chemical characteristics of concern, otherwise the material is assumed to be reusable at the site as backfill.

It is the responsibility of the **Contractor** to coordinate with the **Engineer** to verify the inplace material in accordance with the classifications listed below. Soil across the site is presumed to be polluted fill or native soil based on analytical data collected during our subsurface investigations.

- **Uncontaminated/Native Soils:** These soils are "clean" material, with no visual or olfactory evidence of contamination and with chemical test results consistent with natively occurring background levels.
- **Polluted Fill:** These are soil that contain pollutants at concentrations above background levels as determined by the **Engineer** and that meet the requirements of the receiving facility.

3.3.2 Excavation

During excavation, the **Contractor** shall be responsible for performing the following specific tasks:

- Observe excavation for visual or olfactory evidence of contamination, such as certain physical objects, staining, odors, etc. If contamination is suspected in an area or of a type not previously documented, suspend excavation and contact the Engineer. The Engineer will periodically monitor excavations and assist the Contractor with segregation of soil, as necessary.
- Do not mix polluted/natural material with suspect polluted material while excavating, handling, or stockpiling.
- Employ control measures to minimize airborne dust.
- Periodically inspect equipment for leakage of fluids to verify that work areas are not being contaminated by equipment and that off-site areas are not being contaminated during waste transport.
- Load soil directly onto trucks for transport to an approved offsite receiving facility or stockpile at a designated temporary staging location, depending on circumstances.

3.3.3 Material Handling Requirements

3.3.3.1 General Provisions

Where applicable, the **Contractor** shall observe the following general provisions, which may be subject to alterations based on conditions encountered during performance of the work:

- Direct-load and transport excavated material to a designated temporary stockpile area or the approved receiving facility.
- Maintain project documentation with accurate records of environmental conditions within the project, material tracking and bills of lading, and receiving facility certification (as required).
- Segregate excavated material from suspect polluted based on visual observations performed during excavation, as applicable. Submit a complete copy of documentation to the **Engineer** at the completion of the project.

3.3.3.2 Best Management Practices

Contractor shall observe best management practices with the following provisions when transporting excavated material:

- Load material within the project limits and sweep project debris from off-site streets daily.
- Cover all trucks leaving the site and prevent debris from spilling from trucks or being tracked off-site.
- Transport material off-site using the appropriate licensed hauler as applicable under Federal and State DOT regulations.

3.3.4 Temporary Stockpile Area Documentation

As applicable, **Contractor** shall maintain project documentation, including site operation log of stockpile total volumes, environmental conditions at the stockpile area, material tracking, transportation manifests, and disposal certification. Inspect stockpiles daily during construction and record inspection observations in the log book for submittal to

the **Engineer** at the completion of the project. Complete removal of stockpiles shall avoid removal of underlying soils if not placed on pavement. No stockpile shall remain on-site for a period exceeding 45 days unless the proper documentation is filed with the Department of Energy and Environmental Protection, as described in section 4.1.

Documentation shall include daily field reports and minutes of meetings related to Soil Management. Submit a complete copy of documentation to the **Engineer** at the completion of the project.

3.3.5 Off-Site Reuse of Excavated Materials

When reusing and disposing of excavated polluted fill/soil off-site, **Contractor** shall use the guidelines below.

- **Polluted Fill/Native Soil** Soils that are known or presumed to meet applicable RSR Criteria, based on past testing results and/or observations, may either be reused on-site as a backfill or transported off-site for reuse at the approved receiving facility.
- **Contractor** and **Engineer** shall determine options for off-site disposal or treatment of polluted material, if encountered, based on chemical testing and physical observations.
- **Contractor** shall dispose of polluted fill/native material only at the approved receiving facility. Uncontrolled off-site reuse of excavated material is prohibited.
- If necessary, the **Engineer** shall arrange for additional sampling and analysis of soil as may be required by the project. The results of chemical testing shall be provided to **Contractor** and **Owner** for review.
- **Contractor** shall provide **Engineer** copies of Bills of Lading, waste manifests, and any other documentation of off-site disposal requested by **Owner** and **Engineer**.

4.0 Site Excavation Work Approvals/Documentation

4.1 Temporary Soil Staging Area

If necessary, **Contractor** shall designate a temporary soil staging area to **Owner** and be responsible for local or state approvals, if necessary, and maintain documentation of the soils management through and until removal of entire stockpile. Stockpiling of polluted soil for periods exceeding 45 days typically requires registration under a Connecticut General Permit program.

4.2 Approval for Off-Site Reuse of Polluted Fill/Soil at Other Facilities

If an approved receiving facility cannot accept the targeted polluted fill/soil, **Engineer** shall assist the **Contractor** with the preparation and submittal of applications and appropriate attachments to other potential disposal facilities prior to the **Contractor's** transporting of excess excavated soils. This documentation shall be provided under separate cover.

5.0 Anticipated Project Schedule

To be coordinated with the Owner, Construction Manager and General Contractor.

ATTACHMENT A

SITE FIGURES

ATTACHMENT B

TABLES

TABLE 1

Soil Analytical Results Riverside Apartments North Ansonia, CT

Parameter	B-14 (0-2)	B-1/ (7-0)	B-15 (2 5-4 5)	B-15 (5-7)	B-16 (0-2)	B-16 (5-7)	B-17 (2-4)	B-17 (5-7)	B-18 (0-2)	B-18 (5-7)	B-10 (0-2)	B-21 (0-2)	B-21 (5-7)	B-22 (0-2)	B-22 (5-7)	B-23 (0-2)	B-23 (5-7)	B-24 (0-2)	B-24 (5-7)	DCD	Critoria
arameter	B-14 (0-2)	D-14 (7-3)	D-13 (2.3-4.3)	B-13 (3-7)	B-10 (0-2)	B-10 (3-7)	D-17 (2-4)	B-17 (3-7)	B-10 (0-2)	B-10 (3-7)	B-19 (0-2)	B-21 (0-2)	D-21 (3-7)	D-22 (0-2)	D-22 (J-7)	B-23 (0-2)	B-23 (3-7)	D-24 (0-2)	B-24 (3-7)	Res DEC	GA PMC
Date	1/6/16	1/6/16	1/12/16	1/12/16	1/13/16	1/13/16	1/12/16	1/12/16	1/13/16	1/13/16	1/13/16	1/14/16	1/14/16	1/14/16	1/14/16	1/14/16	1/14/16	1/14/16	1/14/16	NC3. DEO	
Polycyclic Aromatic Hydr	ocarbons - PAH	ls (ug/kg)																			
2-Methyl Naphthalene	<340	<350	<320	<360	<340	<320	<350	<330	<360	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	474,000	980
Acenaphthene	<340	<350	<320	<360	<340	<320	<350	<330	470	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	1,000,000	8,400
Acenaphthylene	<340	<350	<320	<360	<340	400	<350	<330	540	<350	<340	<340	340	<340	<320	<320	<320	<340	<330	1,000,000	8,400
Anthracene	<340	<350	<320	<360	<340	<320	<350	<330	1,700	<350	580	<340	470	<340	<320	390	<320	<340	360	1,000,000	40,000
Benzo[a]anthracene	2,500	950	880	<360	610	760	470	<330	3,500	<350	1,600	700	1,700	<340	900	1,100	740	1,100	1,000	1,000	1,000
Benzo[a]pyrene	3,300	1,100	1,200	<360	680	1,000	570	<330	3,700	<350	1,700	810	1,800	<340	1,000	1,100	780	1,200	1,200	1,000	1,000
Benzo[b]fluoranthene	4,000	1,300	1,000	<360	760	1,200	670	400	4,300	<350	2,100	940	2,000	<340	1,200	1,300	890	1,600	1,300	1,000	1,000
Benzo[g,h,i]perylene	1,700	590	780	<360	340	460	<350	<330	1,300	<350	700	<340	650	<340	440	410	<320	510	460	1,000,000	4,200
Benzo[k]fluoranthene	1,900	620	430	<360	360	510	350	<330	2,000	<350	980	440	950	<340	560	640	460	730	610	8,400	1,000
Chrysene	3,200	1,000	890	<360	640	800	450	<330	3,300	<350	1,600	660	1,500	<340	870	960	710	1,100	1,000	84,000	1,000
Dibenz[a,h]anthracene	500	<350	330	<360	<340	<320	<350	<330	370	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	1,000	1,000
Fluoranthene	5,700	2,300	1,200	<360	1,200	1,200	750	600	7,900	<350	3,600	1,500	3,400	<340	1,800	2,100	1,500	2,200	2,200	1,000,000	5,600
Fluorene	<340	<350	<320	<360	<340	<320	<350	<330	620	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	1,000,000	5,600
ndeno[1,2,3-cd]pyrene	1,700	620	640	<360	360	410	<350	<330	1,500	<350	710	<340	680	<340	420	430	<320	530	470	1,000	1,000
Naphthalene	<340	<350	<320	<360	<340	<320	<350	<330	400	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	1,000,000	5,600
Naphthalene	<340	<350	<320	<360	<340	<320	<350	<330	400	<350	<340	<340	<330	<340	<320	<320	<320	<340	<330	1,000,000	5,600
Phenanthrene	1,600	1,200	540	<360	460	610	<350	<330	6,600	<350	2,500	810	1,500	<340	950	1,200	750	880	1,200	1,000,000	4,000
Syrene	4,700	2,000	1,200	<360	1,100	1,300	700	540	6,700	<350	3,200	1,400	3,100	<340	1,700	1,800	1,300	2,000	2,100	1,000,000	4,000
Total Metals (mɑ/kɑ)																					
Arsenic	3	2.3	5.1	4.2	3.2	4.9	3.7	6.1	4.3	3.1	3.3	4	4.9	2.1	4.8	4.1	3.3	6.3	2.8	10	0.05
Barium	44	43	110	40	38	40	51	37	37	26	72	67	62	27	83	53	57	63	54	4.700	1
Cadmium	0.59	< 0.59	1.3	<0.60	< 0.56	< 0.54	0.61	< 0.56	< 0.59	< 0.59	1.2	1.1	1	<0.57	1.1	0.59	0.8	1.7	0.54	34	0.005
Chromium	10	18	21	16	11	13	13	17	9.4	8.3	19	15	12	8.1	16	14	23	16	14	100	0.05
_ead	74	30	230	15	69	37	98	39	69	9.9	150	130	160	8.9	130	84	67	220	200	400	0.015
Mercury	<0.22	<0.24	0.32	<0.24	<0.22	<0.21	0.45	<0.22	<0.24	<0.23	0.25	<0.23	<0.22	<0.23	0.97	<0.22	<0.21	0.47	<0.22	20	0.002
Selenium	3.4	5.1	5.7	6.4	3	3.7	3.9	4.6	3.3	3.3	3.3	4.8	3.6	2.6	5.2	3.5	3.4	8.6	1.8	340	0.05
Silver	<2.2	<2.4	10	<2.4	<2.2	<2.1	<2.4	<2.2	<2.4	<2.3	<2.2	<2.3	<2.2	<2.3	<2.1	<2.2	<2.1	<2.3	<2.2	340	0.036
																					1

ug/kg - micrograms per kilogram Res. DEC - Residential Direct Exposure Criteria GA PMC - GA Pollutant Mobility Criteria RSRs - Remediation Standard Regulations

TABLE 2

Detected Chemical Parameters - Groundwater Riverside Apartments North Ansonia, CT

WELL ID	MW-1	MW-2	MW-3	MW-4	TRIP BLANK	SWPC ¹ (mg/L)	RES. VC ² (mg/L)	GWPC ³ (mg/L)
Sample ID	MW-1	MW-2	MW-3	MW-4				
Date	1/31/16	1/31/16	1/31/16	1/31/16				
VOCs (ug/L)	ND	ND	ND	ND	ND			

1. SWPC = Surface Water Protection Criteria for Substances in Ground Water

2. RES. VC = Residential Volatilization Criteria for Substances in Ground Water (proposed change in brackets)

3. GWPC = Ground Water Protection Criteria (do not apply to site)

4. ND = None Detected

ATTACHMENT C

BORING LOGS

TEST BORING LOG													
GZA GeoEnvironmental, Inc. Engineers and Scientists	Ansonia Housing Authority 106-165 Olsen Drive Ansonia, CT	EXPLORATION NO.: GZ-14A SHEET: 1 of 1 PROJECT NO: 05.0045516.00 REVIEWED BY: D.Barstow											
Logged By: B. Gerardi Drilling Co.: Hardiman Co. & Associates, Inc. Foreman: A. Scaife	Type of Rig: TruckBoring LRig Model: B-50Ground SDrilling Method:Final BorHSADate State	ocation: See Plan H. Datum: Project Surface Elev. (ft.): 37.1 V. Datum: Project ring Depth (ft.): 10.5 rt Finish: 1/6/2016											
Hammer Type: Cathead/Safety Hammer Hammer Weight (Ib.): 140 lbs	Sampler Type: Split Spoon Sampler O.D. (in.): 2"	Groundwater Depth (ft.) Date Time Water Depth Stab. Time											
Hammer Fall (in.): 30" Auger or Casing O.D./I.D Dia (in.): 3 1/4"	Sampler Length (in.): 30" Rock Core Size: N/A	1/6/16 Dry 5 min.											
Casing Sample Depth Blows/ (ft) Core No. Depth Pen. Rec. Blows S	SPT Sample Description ar (Modified Burmiste	nd Identification											
5	R SS-1 : No Penetration End of exploration	at 10.5 feet.											
30													
1 - Augered to 10' 2 - Auger Refusal at 10.5' (Offset 5') 3 - Boring backfilled with auger spoils 4 - Offset 5' and hit Auger Refusal at 9.5' (G2	Z-14B)												
See Log Key for explanation of sample desc approximate boundaries between soil and bedroc been made at the times and under the condition than those present at the times the measurement	cription and identification procedures k types. Actual transitions may be grad s stated. Fluctuations of groundwater s were made.	. Stratification lines represent dual. Water level readings have may occur due to other factors Exploration No.: GZ-14A											

	TEST BORING LOG																
G		GZA GeoE Enginee	nviro n ers and S	ime i Scient	ntal,	Inc.		Ansonia Housin 106-165 Olse Ansonia,	g Authorit en Drive , CT	у	EXP SHE PRC REV	PLORATIO ET: DJECT NO /IEWED B	N N 1 (: 05 Y: D	O.: 0 of 1 .0045 0.Bars	6Z-15 516.00 tow		
Logo Drilli Fore	ged By: ing Co.: man:	B. Ge Hardi A. Sc	erardi iman Co caife	o. & A	Associ	iates, Inc.	Ty Rig Dri	Type of Rig: TruckBoring Location:Rig Model: B-50Ground SurfaceDrilling Method:Final Boring DepHSADate Start - Finis				See Plan H. Datum: Pr Elev. (ft.): 37.2 V. Datum: Pr th (ft.): 17 1/12/2016 - 1/12/2016					
Ham	mer Ty	pe: Ca	athead/S	Safety	/ Ham	nmer	Sa	mpler Type: Split Spoor	n			Groundy	vate	Dept	h (ft.)		
Ham Ham Auge	mer We mer Fa er or Ca	eight (l II (in.): Ising C	l b.): 14 30" D.D./I.D	0 lbs Dia (i	in.):	3 1/4"	Sa Sa Ro	mpler O.D. (in.): 2" mpler Length (in.): 30" ck Core Size: N/A		Date 1/12/16		1000	v	Dry	/ /	Stab. I	ime
Depth	Casing Blows/		Donth	Samp	ble	Diaura	CDT	Sample Deso	cription a	nd Identifi	catio	n	Jark	Field) bth	Stratum	×. (;
(ft)	Core Rate	No.	(ft.)	(in)	(in)	(per 6 in.)	Value	(Modified	Burmiste	r Procedu	ire)		Ren	Data	(ff	Descriptio	n≝€
-		SS-1	0.5-	24	12	15 15	46	SS-1 : Top 6": Brown,	fine SANE	D, some Silt	t, trac	e fine	1		0.5	ASPHAL	36.Z
			2.5			31 26		Gravel, trace Roots									
-		SS-2	2.5-	24	18	18 40	70	Bottom 6": Dark brown	n, fine GRA trace Bric	AVEL, some	e fine	to					
	4		4.5			30 20		SS-2 : Very dense, da	rk brown/b	black, fine to	o coar	rse				F U 1	
5 _	-				10		6	SAND, some fine Grav	vel, some	Silt, trace B	Brick, 1	trace	2			FILL	
-	-	55-3	5-7	24	12	23		Asphalt SS-3 · Loose orange	brown SI	I T and fine	SAN	D					
-	-		7.0				9										
-	-	55-4	7-9	24	14	7 12		Bottom 4": Light brown	e, brown, n/beige, fin	e to coarse	e SAN	ID, some	3		8		29.2
-	-							fine to coarse Gravel,	trace Silt			,	3				
10 _	-	SS-5	10-12	24	20	100 41	85	SS-5 · Verv dense are	ev brown	fine to coa	rse Gl	RAVEI	4				
-	-	00-0	10-12	24	20	44 38		some fine to medium S	Sand, trac	e Silt	36 01	IVAVEL,	-		CAN		
-	-														SAN	J AND GR	AVEL
-	-																
-	1																
15 _	-	SS-6	15-17	24	14	98	17	SS-6 : Medium dense,	light brow	n, fine to c	. fine to coarse SAND.				15		22.2
-	-					99		trace Silt (Stratified)	U U	.					47	SAND	00.0
-	1							End of e	exploration	at 17 feet.			5		17		20.2
-	-																
- 20	-																
20 _	-																
-	1																
-	1																
-	1																
25																	
	1																
]																
.																	
	1																
30																	
REMARKS	1 - Aug 2 - Dec 3 - Grir 4 - Grir 5 - Bor	er fror rease nding c nding c ing ba	m 0 to 2 d drilling on auger on auger ckfilled	5'. G g resis rs at rs at with a	Grindir stance 8' to 9 10' to auger	ng througho e at 4.5 fee 9.5' 13' spoils	ut t										
	100 1							an and the stiff of		Obertif	41 a 1	lines					
See	Log K	ey tor	r explar daries b	natior petwe	n of en so	sample de	scripti	on and identification poes. Actual transitions m	procedures	dual. Wate	tion I r level	lines repr l readings	eser hav		xplo م	ration N	0.:
than	those p	at the present	t at the	times	the r	neasureme	nts we	ere made.	oundwater	may occur	aue	to other fa	CIO	s	,		
-					-		-					-				-	

	TEST BORING LOG																
G		GZA GeoE	nviror ers and S	ime i Scient	n tal, ists	Inc.		Ansonia Housing Authority 106-165 Olsen Drive Ansonia, CT				EXPLORATION NO.: GZ-16 SHEET: 1 of 1 PROJECT NO: 05.0045516.00 REVIEWED BY: D.Barstow					
Log <u>e</u> Drill Fore	ged By: ing Co.: eman:	B. Ge Hard A. So	erardi iman Co aife). & A	SSOC	iates, Inc.	Ty Rig Dr	Type of Rig: TruckBoring Location:Rig Model: B-50Ground Surface EDrilling Method:Final Boring DeptHSADate Start - Finisł				See Plan H. Datum: Proj :lev. (ft.): 36.5 h (ft.): 22 n: 1/12/2016 - 1/12/2016					
Ham	nmer Ty	pe: Ca	athead/S	Safety	/ Ham	nmer	Sa	mpler Type: Split Spoor	า		0	Groundv	vate	r Dept	h (ft.)	04-1-	- 1
Harr Harr Aug	imer We imer Fa er or Ca	eight (l II (in.): Ising (b.): 14 30" D.D./I.D	0 lbs Dia (i	n.):	3 1/4"	Sa Sa Ro	mpler O.D. (in.): 2" mpler Length (in.): 30" ock Core Size: N/A		Date 1/12/16	1	300	W	Dry		Stab.	Time
Deptł (ft)	Blows/ Core	No.	Depth	Pen.	Rec.	Blows	SPT	Sample Deso (Modified	cription a Burmiste	nd Identifier Procedu	cation ire)		emar	Field Test	Cepth (ft.)	Stratum Descriptio	n ⊟ (;
	Rate	SS-1	(IL.) 0.5- 2.5	24	16	6 15 12 15	27	SS-1 : Medium dense, Silt, little fine to coarse	brown, fir Gravel	ne to coarse	e SAND	, some	~	Dala	0.5	ASPHAL	T36.0
	-	SS-2	2.5- 4.5	24	14	25 19 15 13	34	SS-2 : Dense, brown, Silt, little fine to coarse	black, fine e Gravel, ti	to coarse s race Roots	SAND, s	some					
5 _	-	SS-3	5-7	24	14	4 4 3 3	7	SS-3 : Top 12": Brown trace Ash	, orange, 1	fine SAND,	some S	Silt,				FILL	
	-	SS-4	7-9	24	8	22 23	4	Bottom 2": Black, grey Ash and Cinders, trace SS-4 : Loose, black, g little Ash and Cinders,	r, white, Fi e Coal rey, white, trace Coa	rebrick Frag Firebrick F	gments, Fragmen	little its,	1		927.5		
	-	SS-5	10-12	24	8	33 41 25 25	66	SS-5 : Very dense, ligh some fine to coarse G	ht brown, f ravel, trac	ine to coars e Silt	se SANI	D,	2				
15 _	-	SS-6	15-17	24	20	15 39 37 37	76	SS-6 : Very dense, lig fine to coarse Gravel, f	ht brown, f trace Silt	ine to coars	se SANI	D, little	3		SAN	d and gi	RAVEL
20 _	-	SS-7	20-22	24	14	26 29 32 27	61	SS-7 : Very dense, bro and fine to coarse SAN	own, black ND, trace \$, fine to coa Silt	arse GR	AVEL			22		14.5
								End of e	exploration	at 22 feet.			4				
25 _	-																
2016; 4:14 30																	
ALE LEST BURING; 2/19/ REMARKS	1 - Bro 2 - Grir 3 - Ora 4 - Bor	wn/ora nding c nge st ing ba	inge, fin on auger ratificati ckfilled v	e Sar rs at s on of with a	nd, tra 9'-10' oservo auger	ace Silt four (Possible E ed in SS-6 spoils	nd in e 3oulde	end of SS-4 at approxima er)	ately 9' (Na	atural)							
See appr beer than	Log K oximate n made those p	ey for boun at the presen	r explar daries b times a t at the f	natior etwe and u times	n of en so nder the r	sample de il and bedro the condition neasureme	script ock ty ons st nts we	ion and identification p pes. Actual transitions m ated. Fluctuations of gro ere made.	procedures ay be gra pundwater	s. Stratifica dual. Water may occur	tion line r level re due to	es repreadings other fa	eser hav actor	nt e rs	Explo (ration N GZ-16	lo.:
								TEST BORIN	G LOG								
-------------	-----------------------	-------------------------	----------------------------	--------------------	-----------------	--------------------------	-----------------------	--	--------------------	--------	--------------	--	---	---------------------------	---------------------------------	------------	
G		GZA GeoEi Inginee	nviron ers and S	men Icienti	sts	Inc.		Ansonia Housing Au 106-165 Olsen D Ansonia, CT	uthority rive			EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NO.: 1 of 1 : 05.004 Y: D.Ba	GZ-17 5516.00 rstow	0		
Logg	ed By:	B. Ge Hardi	erardi man Co	<i>8</i> . Δα	socia	tes Inc	Type of F	Rig: Truck B-50	Boring Lo	ocat	tion: S	See Plan		H. D	atum: Proiect		
Fore	man:	A. Sc	aife		50012	103, 110	Drilling	Method: HSA	Final Bor	ring	Depth	(ft.): 28	2/2016	V. D	atum:		
Ham	mor Tv	10 . Ca	thead/S	afety	Hamr	ner	Sa	mnler Type: Split Spoon	Date Sta		1111511.	Groundv	vater De	pth (ft.)	FIOJECI		
Ham	mer We	ight (b.): 14	0 lbs	i iaini		Sa	mpler O.D. (in.): 2"			Date 1/12/16	1430	Wate	r Depth 21'	Stab. T	ime	
Auge	r or Casi	ing O.D	0./I.D Dia	(in.):	2	1/4"	Ro	ck Core Size: N/A									
Depth	Casing Blows/		Denth	Samp	le Dec	1/4 Diau		Sample Descripti	on	lark	Field						
(ft)	Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blow per 6	_{5"} Value	Modified Burmist	er	Rem	Test Data		Elev (ft.)				
-		SS-1	0-2	24	8	5 6 6 1	§ 0 12	SS-1 : Medium dense, b SAND, some Silt, trace f	rown, fine ine								
-		55-2	2-4	24	12	12	8 2	Gravel, trace Roots									
-		00 2				7 9	9 15	SS-2 : Medium dense, b SAND and SILT, trace fi	rown, fine ne								
5								Gravel, trace Roots									
<u> </u>		SS-3	5-7	24	4	13 1	4	SS-3 : Medium dense, b	rown, fine			FILL					
						/ 5	21	to coarse SAND and SIL fine Gravel	T, trace								
-		SS-4	7-9	24	4	86	6 21 18	SS-4 : Medium dense, b	rown/light						—2" PVC rise	er (0-16')	
-								some fine to coarse GAN	ID, trace								
10 _		SS-5	10-12	24	22	3 6	3	Silt	0000			10	25.7				
						7 1	0 13	SILT and fine SAND	OWII,								
-								Bottom 20": Light brown, medium SAND_trace Sil	, fine to t								
15 _		85-6	15_17	24	21	9.1	6	SS 6 : Donco light brow	n finata						-Bentonite (Chips	
-		000	10 11			18 2	21 34	coarse SAND, trace fine	Gravel,						(14-10)		
-								trace Silt									
-												SAND					
20					10												
		55-7	20-22	24	18	6 13 15 1	3 7 ₂₈	SS-7 : Medium dense, b to medium SAND, trace	rown, fine Silt								
2 – 17 –		SS-8	22-24	24	24	10 2	22	SS-8 : Top 12": Brown, f	ine to						 Filter Sand 	(16'-28')	
						21 2	22 43	medium SAND, trace Sil	t (Wet)						——2" PVC scr (18'-28')	reen	
25								and fine to coarse SAND	GRAVEL), trace								
								Silt (Wet)				<u></u>	9.7				
- 10												SAND AND GRAVE	L				
								End of exploration at 28	feet.	2		28	7.7				
- 30								,									
	1 - Grino 2 - Moni	ding on toring v	augers a vell insta	at appr lled at	oxima 28'. 1	tely 5'-8' 0' of 2" F	PVC, 10-slot	t PVC well screen set at app	roximately 2	28' be	elow gra	ade. Filter sand pla	iced in ar	inulus ar	ound		
RKS	well fror	n 17'-28	8'. Bentor	nite se	eal fror	n 15'-17'	' below grac	le. Auger spoils from 17' to g	ground surfa	ice							
EMA																	
Strati	fication	lines r	epresen	t appr	oxima	ate boun	idaries betv	ween soil and bedrock typ	es. Actual t	rans	sitions	may be gradual.	Nater	Expl	oration No	0.:	
other	factors	than t	hose pre	esent	at the	times t	he measure	ements were made.	GuduONS (луſ	oundw	ater may occur t		-	GZ-17		

								TEST BORIN	G LOG					
G		GZA GeoE Enginee	nviro r ers and S	imei Scient	ntal,	Inc.		Ansonia Housin 106-165 Olse Ansonia,	g Authorit en Drive , CT	у	EXPLORATION SHEET: PROJECT NO REVIEWED B	0N N 1 (0: 05 Y: C	0.: 0 of 1 .0045 0.Bars	6Z-18 516.00 tow
Lo Dr Fo	gged By illing Co reman:	/: B. G .: Hard A. So	erardi iman Co caife	о. & А	SSOC	iates, Inc.	Tyj Rig Dri	be of Rig: Truck 3 Model: B-50 Iling Method: HSA	Boring L Ground Final Bo Date Sta	ocation: S Surface Ele ring Depth rt - Finish:	ee Plan ev. (ft.): 36 (ft.): 17 1/13/2016 - 1/ ⁻	13/20	016	H. Datum: Project V. Datum: Project
На	mmer T	ype: Ca	athead/S	Safety	Ham	nmer	Sa	mpler Type: Split Spoor	n	Date	Ground	vate	r Dept	h (ft.) Ionth Stab Time
Ha Ha Au	immer V immer F iger or (Veight (all (in.): Casing (ib.): 14 30" D.D./I.D	0 lbs Dia (i	n.):	3 1/4"	Sa Sa Ro	mpler O.D. (In.): 2" mpler Length (in.): 30" ck Core Size: N/A		1/12/16	0945		Dry	
Dep (ff	Casin oth Blows	g s/ No	Depth	Samp Pen.	le Rec.	Blows	SPT	Sample Deso	cription a	nd Identifie	cation	emark	Field Test	للله الله Stratum جن (: بلغ (بلغ Description الله (: بلغ)
(1	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 3	(per 6 in.) 5 6 7 11	Value 13	SS-1 : Medium dense,	, brown, fir	ne SAND, se	ome Silt,	Å	Data	
	-	SS-2	2-4	16	4	9 100/4"	R	SS-2 : Brown, fine to c Silt, trace Ash	coarse SAI	ND, little fin	e Gravel, little			
5	-	SS-3	5-7	24	12	49 65	15	SS-3 : Top 4": Light br Gravel, trace Silt	rown, fine	to coarse S	AND, little fine	1		FILL
	-	SS-4	7-9	24	14	33 1020	13	Bottom 8": Dark brown Gravel, trace Roots, tr SS-4 : Medium dense, Roots	n, fine SAN ace Wood , brown, Sl	ID and SILT	, trace fine SAND, trace			828.0
10	-	SS-5	10-12	24	12	5 12 11 16	23	SS-5 : Medium dense, trace fine Gravel, trace	, light brow e Silt	/n, fine to co	oarse SAND,			
15	-													SAND AND GRAVEL
	-	SS-6	15-17	24	20	11 16 18 23	34	SS-6 : Dense, light bro and fine to coarse SAN	own/beige, ND, trace \$	fine to oca Silt	rse GRAVEL	2		17 19.0
									-xpioration	at 17 leet.		2		
20	-													
25	-													
	-													
30	_													
REMARKS	1 - In 2 - Bo	ferred C bring ba	cobble in ckfilled	n tip o with a	f SS- luger	2. Auger to spols	5'. Gr	inding throughout						
Se ap be tha	e Log proxima en mad an those	Key fo te boun e at the presen	r explar daries b times a t at the	natior betwee and u times	n of en so nder the r	sample de il and bedro the conditio neasureme	scripti ock typ ons sta ots we	on and identification poes. Actual transitions mated. Fluctuations of gro	procedures hay be gra bundwater	. Stratifica dual. Water may occur	tion lines repr level readings due to other fa	eser hav actor	nt e s	Exploration No.: GZ-18

								TEST BORIN	G LOG						
G		GZA GeoEi Inginee	nviron ers and S	men cienti	sts	Inc.		Ansonia Housing Au 106-165 Olsen D Ansonia, CT	uthority rive			EXPLORATION SHEET: PROJECT NO: REVIEWED BY	NO.: 0 1 of 1 05.0045 D.Bars	57-19 516.00 tow	
Logo Drill Fore	ged By: ing Co.: man:	B. Ge Hardi A. Sc	erardi man Co. aife	. & As	socia	tes, Inc	Type of F Rig Mode Drilling I	Rig: Truck el: ^{B-50} Method: HSA	Boring Lo Ground S Final Bori Date Star	ocat Surfa ing t - F	tion: S ace Ele Depth Finish:	See Plan ev. (ft.): 32.3 (ft.): 27 1/13/2016 - 1/13	/2016	H. Da V. Da	atum: Project atum: Project
Ham	mer Ty	be: Ca	thead/Sa	afety	Hamr	ner	Sa	mpler Type: Split Spoon	-		Data	Groundwa	ater Dept	h (ft.)	Stab Time
Ham Ham Auge	mer We mer Fal r or Casi	ight (l l (in.): na O.D	l b.): 140 : 30")./I.D Dia	0 lbs (in.):			Sa Sa Bo	mpler O.D. (in.): 2" mpler Length (in.): 30" ck Core Size: N/A	-		1/13/16	1130	19.5	5	10 min.
	Casing			Samr	3	1/4"				¥		Stratum			
Depth (ft)	Blows/ Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blow per (vs SPT 6" Value	Sample Descripti Modified Burmist	on ter	Remai	Test Data		(ft.)		
	-	SS-1	0-2	24	12	3 1 21 -	3	SS-1 : Top 6": Brown, Si fine Sand trace Roots	ILT, little				31.8		
-	-	SS-2	2-4	24	4	87	7 5 14	Bottom 6: Dark brown, fi GRAVEL, some fine to r Sand, little Silt, trace Cin	ne nedium iders						
5_		SS-3	5-7	24	0	58 66	3 5 14	SS-2 : Medium dense, d brown, fine to coarse SA fine to coarse Gravel, litt SS-3 : No Recovery	ark ND, little le Silt			FILL			
-	-	SS-4	7-9	24	2	5 2 1 ⁻	2 1 3	SS-4 : Loose, dark brow SAND, some Silt, trace I trace Roots	n, fine Brick,	1					——2" PVC riser (0-14') ◀—Spoils (0-14')
10_		SS-5	10-12	24	7	8 1 15 -	3 15 28	SS-5 : Medium dense, b to coarse GRAVEL, little coarse Sand little Silt fr	rown, fine fine to ace	2		12	20.3		
-	-	SS-6	12-14	24	8	12 ⁻ 10	11 5 21	Roots SS-6 : Medium dense, ta coarse SAND, little fine (an, fine to Gravel,			SAND			
-	•	SS-7	15-17	24	16	6 5 15 3	5 30 20	trace Silt SS-7 : Top 3": Grey, fine coarse SAND, trace fine trace Silt Middle 10": Light brown	e to Gravel,	3 4		16	16.3		Bentonite Chips (14'-16')
20 _	-	SS-8	20-22	24	10	13 2 15 -	20 10 35	medium SAND, trace Sil Bottom 3": Dark brown, y to coarse GRAVEL, little Sand, trace Silt SS-8 : Dense, brown, fin coarse GRAVEL, little fin coarse Sand, trace Silt (t grey, fine fine to to Wet)			SAND AND GRAVEL			Filter Sand (16'-27") ——2" PVC screen (17'-27')
25 _	-	SS-9	25-27	24	10	10 ⁻ 10 ⁻	10 12 20	SS-9 : Medium dense, b to coarse SAND, trace fi Gravel, trace Silt (Wet)	rown, fine ne	5		27	5.3		
-								End of exploration at 27	feet.	5					
30 KEMARKS	1 - Grino 2 - Grino 3 - Grino 4 - Rour 5 - Moni well fror	ding on ding on ding on ided co toring v n 16'-23	augers a augers a augers a bbles ob: vell instal 7'. 2' of B	It appr appr appr appr served led at entoni	roxima roxima roxima d auge 27'. 1 ite at 1	tely 9'-1 tely 11'- tely 15'- r spoils 0' of 2" F 4'-16'. <i>F</i>	0' 13' 20' while drillin PVC, 10-sloi Auger spoils	g 15'-20' tted well screen set at appro backfilled from existing grad	ximately 27 fl de to 14'	t. be	elow gra	de. Filter Sand plac	ced in ann	ulus arc	bund
Strat level other	ification reading factors	lines r s have than tl	epresent been m hose pre	t appr nade a sent a	oxima at the at the	te bour times times t	ndaries betv and under he measur	ween soil and bedrock typ the conditions stated. Flu ements were made.	es. Actual tr ictuations of	rans f gro	itions r oundwa	nay be gradual. W ater may occur di	/ater ue to	Explo	oration No.: GZ-19

									TEST BORIN	G LOG								
GZ		GZA GeoE Inginee	nviror ers and S	ime i Scient	n tal, ists	Inc.			Ansonia Housin 106-165 Olse Ansonia,	g Authorit en Drive CT	у	EXF SHE PRC REV	PLORATIO ET: DJECT NO (IEWED B	N N 1 (: 05 Y: 0	0.: 0 of 1 5.0045).Bars	SZ-20 516.00 tow		
Logg Drillin Forer	ed By: ng Co.: nan:	B. Ge Hardi A. Sc	erardi iman Co caife). & A	ssoci	iates, Inc		Typ Rig Dril H	e of Rig: Truck Model: B-50 lling Method: ISA	Boring L Ground S Final Bo Date Sta	ocation: S Surface Ele ring Depth rt - Finish:	See Pl ev. (ft. (ft.): 1/13/	an): 35.3 27 /2016 - 1/1	3/20	016	H. Dat V. Dat	tum: Proje tum: Proje	ect ect
Hami Hami Hami Auge	ner Ty ner We ner Fal r or Ca	pe: Ca eight (l II (in.): sing (athead/S I b.): 14 30" D.D./I.D	Safety 0 lbs Dia (i	/ Ham i n.):	nmer 3 1/4"		San San San Roc	npler Type: Split Spoor npler O.D. (in.): 2" npler Length (in.): 30" ck Core Size: N/A	n	Date 1/13/16		Groundv Time 1515	vate N	r Dept /ater D 23'	h (ft.) Depth	Stab. T 5 mi	'ime n.
Depth	Casing Blows/	No	Depth	Samp Pen.	Rec.	Blows	SF	PT	Sample Deso (Modified	cription a	nd Identifi	catio	n	emark	Field Test	epth (ft.)	Stratum Descriptio	n .:) (#) (#)
(11)	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 20	(per 6 ir 5 7	i.) Va 1	lue 5	SS-1 : Top 4": Brown,	fine SANE	and SILT,	little	Roots	R	Data	 ധാ	TOPSOIL	ш — 35.0
-		SS-2	2-4	24	16	8 13 15 30 55 30	8	35	Bottom 16": Light brow Silt, trace fine Gravel SS-2 : Top 4": Tan, fin Bottom 12": Brown, fin Gravel, little Silt, trace	vn/brown, t e SAND, l e to coars Ash/Coal	fine to coar ittle Silt (Fil e SAND, so	se SA I) ome f	ND, little	1				
5		SS-3	5-7	24	15	15 13 8 5	2	21	SS-3 : Medium dense, some fine to coarse G	dark brow ravel, little	vn, black, A Silt, little fi	SPH/ ne to	ALT medium	2				
-		SS-4	7-9	24	4	15 32 19 11	5	51	Sand SS-4 : Very dense, bro Gravel, trace Asphalt,	own, fine to trace Silt	o coarse SA	AND,	little fine				FILL	
10 _		SS-5	10-12	24	5	24 33	7	7	SS-5 : Loose, brown, f fine Gravel	ine to coa	rse SAND,	little S	Silt, trace					
-		SS-6	12-14	24	0	33 33	6	6	SS-6 : No Recovery									
15 _ -		SS-7	15-17	24	14	34 67	1	0	SS-7 : Medium dense, fine Gravel, trace Silt	beige, fin	e to coarse	SAN	D, trace			15		20.3
20 _		SS-8	20-22	24	24	57 1011	1	7	SS-8 : Medium dense,	light brow	/n, fine SAN	ND, so	ome Silt				SAND	
 25		SS-9	25-27	24	24	58 1115	1	9	SS-9 : Medium dense, (Wet)	fine to me	edium SAN	D, tra	ce Silt			27		8.3
									End of e	exploration	at 27 feet.			3				
30																		
REMARKS	1 - Grir 2 - Grir 3 - Bori	iding c iding c ing ba	on auger on auger ckfilled v	rs fro rs fro with a	m 3'-8 m 6'-9 auger	5' 9' spoils								1	1	1		
See appro been than	Log K ximate made those p	ey for bound at the present	r explar daries b times a t at the f	natior etwe and u times	n of en so nder the n	sample il and be the conc neasure	descr drock litions nents	riptic c typ s sta s we	on and identification p bes. Actual transitions m ted. Fluctuations of gro re made.	procedures bay be gra bundwater	s. Stratifica dual. Wate may occur	tion r leve due	lines repr l readings to other fa	eser hav actor	nt e rs	Exploi	ration N GZ-20	0.:

								TEST BORIN	G LOG							
G		GZA GeoEi nginee	nviron ers and S	men cienti	t al,]	Inc.		Ansonia Housing Au 106-165 Olsen D Ansonia, CT	uthority rive			EXPLORATIO SHEET: PROJECT NO REVIEWED B	N NO.: 1 of 1 : 05.00 Y: D.Ba	GZ-21 I 945516.00 arstow	0	
Log Drill Fore	ged By: ling Co.: eman:	B.Ge Hardi A. Sc	rardi man Co. aife	. & As	socia	tes, Inc	Type of I Rig Mode Drilling I	Rig: Geoprobe el: 7822 DT Method: HSA	Boring Lo Ground S Final Bor	ocat Surfa 'ing	ion: S ace El Depth	See Plan ev. (ft.): 35.7 (ft.): 29		H. C V. D	Datum: Project Datum:	
									Date Star	rt - F	-inish:	1/14/2016 - 1/1	5/2016	onth (ft)	Project	
Ham	nmer Typ nmer We	be: Au iaht (l	Itomatic	0 lbs			Sa Sa	mpler Type: Split Spoon mpler O.D. (in.): 2"			Date	Time	Wate	er Depth	Stab. 1	Time
Ham	nmer Fal er or Casi	l (in.): na 0.D	30" ./I.D Dia	(in.):			Sa	mpler Length (in.): 30"			1/15/16	0830		23'	10 m	in.
	Casing	J -		Samr	2	1/4"				×	The lat	Stratum				
Depti (ft)	Blows Core Rate	No.	Depth (ft.)	Pen. (in)	Rec. (in)	Blow per 6	/s SPT 5" Value	Sample Descripti Modified Burmist	on ter	Remar	Test		Elev. (ft.)			
		SS-1	0-2	24	18	39)	SS-1 : Medium dense, b	rown, fine							
	_	~~~~	~ /			11 1	20	fine Gravel, trace Roots	.1, some							
	-	SS-2	2-4	24	20	12 1	8 29	SS-2 : Top 4": Dark brov	vn, fine to							
	-							fine Gravel, trace Brick,	trace Ash			FILL				
5_	-	SS-3	5-7	24	16	12	6	Bottom 16": Light brown	, fine							
	-					54	11	SAND, little Slit SS-3 : Top 10": Dark bro	wn,			_				
	-	SS-4	7-9	24	14	5 1	2	black, fine GRAVEL, little	e fine to				28.7			
	-					8 5	20	Bottom 6": Light brown, 1	fine to						Spoils (0-	16')
10								coarse SAND, little Silt								ser (0-19')
	_	SS-5	10-11	24	18	5 1 100/2	4 2"	beige, fine to medium SA	AND, little							
	-					100/		Silt		1 2						
	-							fine to medium SAND, li	ttle Silt							
45	-							Bottom 9": Fine to coars	e SAND,							
15	-	SS-6	15-17	24	18	88	3	SS-6 : Medium dense, o	range,							
	-					11 1	10 19	light brown, fine to coars	e SAND,							0.1
								trace fine Gravel, trace c	JIIC						(16'-18')	Chips
	_											SAND			-	
20 _	-	SS-7	20-22	24	11	6.1	3	SS 7 · Modium donas, o	ranga							
	-	00-1	20-22	24	14	12 1	3 25	light brown, fine to coars	e SAND,						•	
	-							trace fine Gravel, trace S	Silt				:		1	
	-														 I ← Filter San	d (18'29')
25	-														1" PVC so (19'-29')	creen
	_														1	
	-														1	
	-							End of exploration at 29	feet	3		29	6.7		1	
30	1 - Poss	ible bo	ulder at a	pprox	imatel	y 11 ft.	- A			-						
χs	2 - Grine 3 - Moni	toring v	m approx vell instal	led at	y 11.5 29 ft. צי_ספי	below ex	o it. kisting grad	e. 10' of 1" PVC, 10-slotted v	vell screen s	set at	t approx	kimately 29' below	grade. F	Filter sand	l placed	
MAR	in annul	io ai Ul			5-23.	Dentorill		10-10 below grade. Augel	Spons Dacki	meu		S to existing yidde				
RE																
	1. 6 1.						alanda I. d		4.4 **				A/-1			
Stra	reading	lines r s have	epresent been m	t appr ade a	oxima at the	times times t	and under	ween soil and bedrock typ the conditions stated. Flu	es. Actual t ictuations o	rans of gr	oundw	may be gradual. ater may occur o	vvater due to	Expl	oration N GZ-21	o.:
	1001015		lose pie	SCIL		แก่เธอ แ	ne measul									

								TEST BORIN	G LOG								
G		GZA GeoE	nviro r ers and S	imei Scient	ntal,	Inc.		Ansonia Housin 106-165 Olse Ansonia,	g Authorit en Drive CT	у	EXPLO SHEET PROJE REVIE	DRATIO I: ECT NO WED B	N N(1 (: 05 Y: D	0.: 0 of 1 5.0045 9.Bars	5Z-22 516.00 tow		
Logg Drilli Fore	jed By: ng Co.: man:	B.Ge Hard A. So	rardi iman Co caife	D. & A	ssoci	iates, Inc.	Tyj Rig Dri	pe of Rig: Geoprobe 3 Model: 7822 DT Iling Method: HSA	Boring L Ground Final Bo Date Sta	ocation: S Surface Ele ring Depth rt - Finish:	See Plan ev. (ft.): (ft.): 2 1/14/20	37.3 0)16 - 1/1	4/20	016	H. Da V. Da	tum: Proj tum: Proj	ect ect
Ham	mer Ty	pe: Au	Itomatic				Sa	mpler Type: Split Spoor	า	Data	G	iroundw	ate	r Dept	h (ft.)	Otah '	Fires e
Ham Ham Auge	mer We mer Fa er or Ca	eight (l II (in.): Ising (l b.): 14 30" D.D./I.D	0 lbs Dia (i	n.):	2 1/4"	Sa Sa Ro	mpler O.D. (in.): 2" mpler Length (in.): 30" ck Core Size: N/A		1/14/16	1	115		Dry	, ,	Stab.	IIIIe
Depth	Casing Blows/		Denth	Samp Pen	Rec	Blows	SPT	Sample Desc	cription a	nd Identifi	cation		nark	Field	(;)	Stratum	, e n
(ft)	Core Rate	No.	(ft.)	(in)	(in)	(per 6 in.)	Value	(Modified	Burmiste	r Procedu	ire)		Rer	Data	<u> </u>		
-		55-1	0-2	24	16	4145	5 18	Bottom 8": Tan, light b	own, SIL I rown, fine	, some fine to medium	Sand SAND,	little			_0.5	105301	36.8
-		55-2	2-4	24	14	4 5 13 11	10	SS-2 : Medium dense, GRAVEL, some fine to	dark brov coarse S	vn, black, fii and, little S	ne to co iilt	arse	1				
5_		SS-3	5-7	24	15	95 43	9	SS-3 : Loose, dark bro fine to coarse Sand, lit	own fine to tle Silt, tra	coarse GR ice Asphalt,	AVEL, s , trace A	some .sh				EII I	
-		SS-4	7-9	24	15	23 76	10	SS-4 : Top 7": Dark br Bottom 8": Light brown SAND, trace Silt	own, SILT n, fine GR/	, little fine S AVEL and fi	SAND ine to co	barse					
10 _		SS-5	10-12	24	8	22 23	4	SS-5 : Top 7": Brown, little fine Gravel	fine to me	dium SANE	D, little S	Silt,					
-		SS-6	12-14	24	20	34 54	9	Bottom 1": Light brown SS-6 : Top 8": Brown, (Topsoil) Bottom 12": Light brow	orange, fin	ND, trace Si ne SAND, s	ilt some Sil	t Silt			13	 SAND	24.3
15 _ -		SS-7	15-17	24	22	9 25 14 23	39	SS-7 : Dense, brown, f Gravel, trace Silt	fine to coa	irse SAND,	some fi	ne	2 3		15 SANI	D AND GF	<u>22.3</u> RAVEL
20 _		00.0	00.00			50/08									20		17.3
-		55-8	20-20	0	0	50/0"	R	SS-8 : No Penetration End of e	exploration	at 20 feet.			4 5				
- 25 _ -																	
- - 30																	
REMARKS	1 - Grir 2 - Grir 3 - Stra 4 - Aug 5 - Bor	nding c nding c atfied s jer refu ing ba	on auger on auger ands ar usal at 2 ckfilled v	r from r from nd gra 20 ft. with a	n appr n appr avel ir auger	roximately 3 roximately 1 n SS-7 spoils	3 ft. to ∣5 ft. to	7 ft. o 19 ft.									
See appro been than	Log K oximate made those p	ey for boun at the presen	r explar daries b times a t at the	natior betwe and u times	n of s en so nder the n	sample de il and bedro the conditio neasureme	scripti ock typ ons sta nts we	on and identification poes. Actual transitions mated. Fluctuations of groever made.	procedures bay be gra bundwater	. Stratifica dual. Water may occur	tion line r level re due to	es repre eadings other fa	eser hav ctor	nt e rs	Explo (ration N GZ-22	lo.:

								TEST BORIN	g log								
G		GZA GeoE	nviror ers and S	ime i Scient	ntal,	Inc.		Ansonia Housin 106-165 Olse Ansonia,	g Authorit n Drive CT	У	EXPLOI SHEET: PROJEC REVIEV	RATIO	N N(1 c : 05 Y: D	0.: 0 of 1 5.0045 9.Bars	57-23 516.00 tow		
Logo Drilli Fore	ged By: ing Co.: man:	B.Ge Hard A. So	rardi iman Co caife). & A	SSOC	iates, Inc.	Ty Rig Dri	pe of Rig: Geoprobe 3 Model: 7822 DT Illing Method: HSA	Boring L Ground Final Bo Date Sta	ocation: S Surface Ele ring Depth rt - Finish:	See Plan ev. (ft.): 3 (ft.): 22 1/14/201	34.5 16 - 1/1	4/20	016	H. Da V. Da	tum: Pro tum: Pro	oject oject
Ham	mer Ty	pe: Au	utomatic				Sa	mpler Type: Split Spoor	ı	Data	Gr	oundw	ater	Dept	h (ft.)	Stab	Timo
Ham Ham Auge	mer We mer Fa er or Ca	eight (l II (in.): Ising (lb.): 14 30" D.D./I.D	0 lbs Dia (i	in.):	2 1/4"	Sa Sa Ro	mpler O.D. (in.): 2" mpler Length (in.): 30" ck Core Size: N/A		1/14/16				Dry		5 m	nin.
Depth	Blows/	No	Depth	Pen.	Rec.	Blows	SPT	Sample Desc	ription a	nd Identifi	cation		mar	Field Test	epth (ft.)	Stratun Descripti	n on ≜ (;
(11)	Rate	SS-1	(ft.) 0-2	(in) 24	(in) 10	(per 6 in.) 11 6 13 16	Value 19	SS-1 : Medium dense, fine Gravel, little Silt, tr	brown, fir ace Brick	ne to coarse , trace Glas	e SAND, I ss	little	Re	Data			ш -
	-	SS-2	2-4	24	8	14 17 13 17	30	SS-2 : Dense, brown, f to coarse SAND, little s	ine to coa Silt, little E	arse GRAVE Brick, trace	EL, some Asphalt	fine	1				
5_	-	SS-3	5-7	24	22	13 14 14 11	28	SS-3 : Medium dense, coarse GRAVEL, some	brown, re e fine to c	d, BRICK a oarse Sand	and fine to I, little Silt) t,	2				
-	-	SS-4	7-9	24	16	7 12 28 21	40	SS-4 : Top 14": Fine to Silt, trace Coal, trace C Bottom 2": Light brown	o coarse S Cinders I, fine to m	AND, some	e Brick, lit ND, little \$	ttle Silt				FILL	
-	-	SS-5	10-12	24	24	43 33 18 13	51	SS-5 : Very dense, dar GRAVEL, some fine to	k brown, i coarse S	red, fine to and, little B	coarse rick, little	Silt	3				
15 _	-	SS-6	15-17	24	24	33 1217	15	SS-6 : Top 12": Dark E Concrete Bottom 12": Light brow to coarse Gravel, trace	Brown, fine rn, fine to e Silt	e SAND and coarse SAN	d SILT, tra ND, little f	ace ine	4		<u>16</u>		18.5
20 _	-	SS-7	20-22	24	10	39 86	17	SS-7 : Medium dense, trace fine Gravel, trace	light brow Silt	vn, fine to co	oarse SA	ND,			SANI	D AND G	RAVEL
								End of e	xploration	at 22 feet.			5		22		12.5
25 _	-																
30																	
REMARKS	1 - Grir 2 - Grir 3 - Grir 4 - SS- 5 - Bor	nding o nding o nding o 5 appe ing ba	on auger on auger on auger eared be ckfilled v	r from r from r from ent, d with a	n appi n appi n appi rilled auger	roximately 2 roximately 2 roximately 7 to 15 ft. for spoils	2 ft. to 5 ft. to 10 ft. to SS-6	4 ft. 10 ft. o 12 ft.						<u> </u>	L		
See appr beer than	Log K oximate made those p	ey for boun at the presen	r explar daries b times a t at the f	natior etwe and u times	n of en so inder s the r	sample de bil and bedr the condition measureme	scripti ock typ ons sta nts we	on and identification p pes. Actual transitions m ated. Fluctuations of gro ere made.	rocedures ay be gra undwater	s. Stratifica dual. Wate may occur	tion lines r level rea due to o	s repre adings other fa	eser hav ictor	nt E e s	Explo (ration I GZ-23	No.:

								TEST BORIN	G LOG							
G		GZA GeoEi Inginee	nviron ers and S	men Icienti	tal,	Inc.		Ansonia Housing Au 106-165 Olsen D Ansonia, CT	uthority rive			EXPLORATION SHEET: PROJECT NO: REVIEWED BY	1 NO.: 1 of 05.00 : D.B	GZ-2 1)45516. arstow	4 00	
Log Dril For	ged By: ling Co. eman:	B.Ge Hardi A. Sc	rardi man Co aife	. & As	ssocia	tes, Inc	Type of F Rig Mode Drilling N	Rig: Geoprobe 91: 7822 DT Method: HSA	Boring Lo Ground Su Final Bori Date Start	cat urfa ng : - F	ion: S ace Ele Depth Finish:	See Plan ev. (ft.): 34 (ft.): 29 1/14/2016 - 1/15	5/2016	H. V.	Datur Proj Datur Proj	n: ect n: ject
Han	nmer Ty	be: Au	itomatic				Sa	mpler Type: Split Spoon	-		Dato	Groundw	ater D Wat	epth (f	t.) th	Stab Time
Han Han Aug	nmer We nmer Fa er or Cas	ight (l l (in.): ing O.D	l b.): 14 30" 0./ I.D Dia	0 lbs (in.):	2	1/4"	Sai Sai Ro	mpler O.D. (in.): 2" mpler Length (in.): 30" ck Core Size: N/A			1/14/16	1515	Trat	21.5'		5 min.
Dept (ft)	Casing h Blows/ Core Rate	No.	Depth (ft.)	Samp Pen. (in)	Rec.	Blow per 6	/s SPT 5" Value	Sample Descripti Modified Burmist	on er	Remark	Field Test Data		Elev. (ft.)			
	Rale	SS-1	0-2	24	4	2 4		SS-1 : Loose, brown, SII	_T, little	<u> </u>	Data		33.5			
		SS-2	2-4	24	10	4 10 12 1 9 7	0 8 3 7 22	fine Sand, trace Roots (7 SS-2 : Top 5": Fine to cc Gravel, little fine to coars trace Silt	Fopsoil) barse se Sand,	1						
5_	-	SS-3	5-7	24	20	24 72	1 2 11	Bottom 5": Beige, fine S/ trace fine Gravel, trace S SS-3 : Top 15": Light bro	AND, Silt own, fine	2		FILL				
	-	SS-4	7-9	24	10	23 22	5	little Silt Bottom 5": Black, dark bi to medium SAND, some	rown, fine Silt,							Spoils (0-16')
10	-	SS-5	10-12	24	7	33 47	7	trace fine Gravel, trace E trace Ash SS-4 : Loose, black/dark	Brick,			<u>12</u>	22.0			
15	-	SS-6	12-14	24	8	96 77	13	Cinders/Ash SS-5 : Loose, brown, fin coarse SAND, some Silt	e to							
20	-	SS-7	15-17	24	12	89 73) ³ 16	SS-6 : Top 6": Light brov coarse SAND, trace fine trace Silt Bottom 2": Brown, fine S little fine Gravel, trace Si SS-7 : Medium dense, b brown, fine to coarse SA	vn, fine to Gravel, AND, It eige/light ND, little			SAND				Bentonite Chips (16'-18')
	-	SS-8	20-22	24	14	3 2: 40 1	3 9 63	fine Gravel, trace Silt SS-8 : Very dense, light brown/beige, fine to coar GRAVEL and fine to coa SAND, trace Silt	se Irse			<u>20.5</u>			₩ ₩	Filter Sand (18'-29') 1" PVC screen
25	-											SAND AND GRAVEL	5.0			(19-29)
30	1							End of exploration at 29	feet.	3						
REMARKS	1 - Grino 2 - Grino 3 - Moni around	ding on ding on toring v well fro	augers a augers a vell insta m 18'-29'	at appr at appr lled at . Bent	roxima roxima 29' be conite s	tely 3'-4' tely 5'-6' elow grac seal from	de. 10' of 1" n 16'-18' bel	PVC, 10-slotted well screer ow grade. Auger spoils back	set at approx filled from 18	xim: 8' to	ately 29 existing)' below grade. Filte g grade.	er sand	placed	in annu	lus
Stra leve othe	tification I reading er factors	lines r s have than t	epresen e been m hose pre	t appr nade esent	oxima at the at the	te boun times a times th	idaries betv and under ne measure	ween soil and bedrock type the conditions stated. Flu ements were made.	es. Actual tra ctuations of	ans gro	itions r oundwa	may be gradual. V ater may occur di	Vater ue to	Exp	olora GZ	tion No.: -24

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Dr. Neil Payne Payne Environmental 85 Willow St. New Haven, CT 06511

Analytical Report CET# 6010276

Report Date:January 25, 2016 Project: Riverside Apts, Ansonia Project Number: 15.127/001

Connecticut Laboratory Certificate: PH 0116 Massachusetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

SAMPLE SUMMARY

The sample(s) were received at 2.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
B-14 (0-2)	6010276-01	Soil	1/06/2016 9:30	01/18/2016
B-14 (7-9)	6010276-02	Soil	1/06/2016 9:55	01/18/2016
B-15 (2.5-4.5)	6010276-03	Soil	1/12/2016 8:45	01/18/2016
B-15 (5-7)	6010276-04	Soil	1/12/2016 9:00	01/18/2016
B-16 (0-2)	6010276-05	Soil	1/13/2016 14:00	01/18/2016
B-16 (5-7)	6010276-06	Soil	1/13/2016 14:20	01/18/2016
B-17 (2-4)	6010276-07	Soil	1/12/2016 13:30	01/18/2016
B-17 (5-7)	6010276-08	Soil	1/12/2016 14:00	01/18/2016
B-18 (0-2)	6010276-09	Soil	1/13/2016 8:30	01/18/2016
B-18 (5-7)	6010276-10	Soil	1/13/2016 8:40	01/18/2016
B-19 (0-2)	6010276-11	Soil	1/13/2016 10:15	01/18/2016
B-21 (0-2)	6010276-12	Soil	1/14/2016 8:00	01/18/2016
B-21 (5-7)	6010276-13	Soil	1/14/2016 8:15	01/18/2016
B-22 (0-2)	6010276-14	Soil	1/14/2016 9:45	01/18/2016
B-22 (5-7)	6010276-15	Soil	1/14/2016 10:05	01/18/2016
B-23 (0-2)	6010276-16	Soil	1/14/2016 11:35	01/18/2016
B-23 (5-7)	6010276-17	Soil	1/14/2016 12:00	01/18/2016
B-24 (0-2)	6010276-18	Soil	1/14/2016 14:00	01/18/2016
B-24 (5-7)	6010276-19	Soil	1/14/2016 14:20	01/18/2016

Analyte: Total Solids [EPA 160.3 modified]

Analyst: JZ

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6010276-01	B-14 (0-2)	90	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-02	B-14 (7-9)	85	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-03	B-15 (2.5-4.5)	94	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-04	B-15 (5-7)	83	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-05	B-16 (0-2)	90	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-06	B-16 (5-7)	93	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-07	B-17 (2-4)	85	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-08	B-17 (5-7)	90	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-09	B-18 (0-2)	84	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-10	B-18 (5-7)	85	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-11	B-19 (0-2)	89	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-12	B-21 (0-2)	87	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-13	B-21 (5-7)	91	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-14	B-22 (0-2)	88	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-15	B-22 (5-7)	94	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-16	B-23 (0-2)	93	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-17	B-23 (5-7)	94	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-18	B-24 (0-2)	88	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	
6010276-19	B-24 (5-7)	92	1.0	%	1	B6A1907	01/19/2016	01/19/2016 13:50	

Analyte: Mercury [EPA 7471B]

Analyst: KP

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6010276-01	B-14 (0-2)	ND	0.22	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 14:59	
6010276-02	B-14 (7-9)	ND	0.24	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 15:02	
6010276-03	B-15 (2.5-4.5)	0.32	0.21	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 15:05	
6010276-04	B-15 (5-7)	ND	0.24	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 15:08	
6010276-05	B-16 (0-2)	ND	0.22	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 15:47	
6010276-06	B-16 (5-7)	ND	0.21	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 15:50	
6010276-07	B-17 (2-4)	0.45	0.24	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 16:02	
6010276-08	B-17 (5-7)	ND	0.22	mg/kg dry	1	B6A2013	01/20/2016	01/20/2016 16:05	
6010276-09	B-18 (0-2)	ND	0.24	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 12:58	
6010276-10	B-18 (5-7)	ND	0.23	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:01	
6010276-11	B-19 (0-2)	0.25	0.22	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:03	
6010276-12	B-21 (0-2)	ND	0.23	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:06	
6010276-13	B-21 (5-7)	ND	0.22	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:09	
6010276-14	B-22 (0-2)	ND	0.23	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:12	
6010276-15	B-22 (5-7)	0.97	0.21	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:15	
6010276-16	B-23 (0-2)	ND	0.22	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:18	
6010276-17	B-23 (5-7)	ND	0.21	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:21	
6010276-18	B-24 (0-2)	0.47	0.23	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:23	
6010276-19	B-24 (5-7)	ND	0.22	mg/kg dry	1	B6A2103	01/21/2016	01/21/2016 13:29	

Client Sample ID B-14 (0-2) Lab ID: 6010276-01

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyst: ALB

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	74	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Selenium	3.4	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Cadmium	0.59	0.56	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Chromium	10	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Arsenic	3.0	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Barium	44	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	
Silver	ND	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:21	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Phenanthrene	1600	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Fluoranthene	5700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Pyrene	4700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Benzo[a]anthracene	2500	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Chrysene	3200	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Benzo[b]fluoranthene	4000	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Benzo[k]fluoranthene	1900	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Benzo[a]pyrene	3300	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Indeno[1,2,3-cd]pyrene	1700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Dibenz[a,h]anthracene	500	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Benzo[g,h,i]perylene	1700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 14:33	
Surrogate: Nitrobenzene-d5	62.9 %	30	- 130		B6A1928	01/19/2016	01/21/2016 14:33	

Client Sample ID B-14 (0-2) Lab ID: 6010276-01

Semivolatile Organics Method: EPA 8270D

Matriv	Soil
	2011

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	69.4 %	30	- 130		B6A1928	01/19/2016	01/21/2016 14:33	
Surrogate: Terphenyl-d14	71.0 %	30	- 130		B6A1928	01/19/2016	01/21/2016 14:33	

Client Sample ID B-14 (7-9) Lab ID: 6010276-02

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	30	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Selenium	5.1	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Cadmium	ND	0.59	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Chromium	18	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Arsenic	2.3	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Barium	43	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	
Silver	ND	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:25	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
2-Methyl Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Acenaphthylene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Acenaphthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Fluorene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Phenanthrene	1200	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Fluoranthene	2300	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Pyrene	2000	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Benzo[a]anthracene	950	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Chrysene	1000	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Benzo[b]fluoranthene	1300	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Benzo[k]fluoranthene	620	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Benzo[a]pyrene	1100	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Indeno[1,2,3-cd]pyrene	620	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Dibenz[a,h]anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Benzo[g,h,i]perylene	590	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 15:20	
Surrogate: Nitrobenzene-d5	62.7 %	30	- 130		B6A1928	01/19/2016	01/21/2016 15:20	

Analyst: ALB

Client Sample ID B-14 (7-9) Lab ID: 6010276-02

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
viati in.	SOIL

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	70.1 %	30	- 130		B6A1928	01/19/2016	01/21/2016 15:20	
Surrogate: Terphenyl-d14	66.0 %	30	- 130		B6A1928	01/19/2016	01/21/2016 15:20	

Client Sample ID B-15 (2.5-4.5) Lab ID: 6010276-03

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyst: ALB

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	230	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Selenium	5.7	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Cadmium	1.3	0.53	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Chromium	21	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Arsenic	5.1	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Barium	110	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	
Silver	10	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:30	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
2-Methyl Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Acenaphthylene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Acenaphthene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Fluorene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Phenanthrene	540	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Fluoranthene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Pyrene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Benzo[a]anthracene	880	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Chrysene	890	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Benzo[b]fluoranthene	1000	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Benzo[k]fluoranthene	430	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Benzo[a]pyrene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Indeno[1,2,3-cd]pyrene	640	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Dibenz[a,h]anthracene	330	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Benzo[g,h,i]perylene	780	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:08	
Surrogate: Nitrobenzene-d5	66.3 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:08	

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Client Sample ID B-15 (2.5-4.5) Lab ID: 6010276-03

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	74.1 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:08	
Surrogate: Terphenyl-d14	69.1 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:08	

Client Sample ID B-15 (5-7) Lab ID: 6010276-04

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	15	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Selenium	6.4	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Cadmium	ND	0.60	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Chromium	16	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Arsenic	4.2	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Barium	40	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	
Silver	ND	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:42	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
2-Methyl Naphthalene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Acenaphthylene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Acenaphthene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Fluorene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Phenanthrene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Anthracene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Fluoranthene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Pyrene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Benzo[a]anthracene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Chrysene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Benzo[b]fluoranthene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Benzo[k]fluoranthene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Benzo[a]pyrene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Indeno[1,2,3-cd]pyrene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Dibenz[a,h]anthracene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Benzo[g,h,i]perylene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 16:56	
Surrogate: Nitrobenzene-d5	59.5 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:56	

Analyst: ALB

Matrix: Soil

Page 11 of 59

Client Sample ID B-15 (5-7) Lab ID: 6010276-04

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	64.5 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:56	
Surrogate: Terphenyl-d14	61.5 %	30	- 130		B6A1928	01/19/2016	01/21/2016 16:56	

Client Sample ID B-16 (0-2) Lab ID: 6010276-05

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	69	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Selenium	3.0	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Cadmium	ND	0.56	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Chromium	11	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Arsenic	3.2	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Barium	38	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	
Silver	ND	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:47	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Phenanthrene	460	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Fluoranthene	1200	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Pyrene	1100	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Benzo[a]anthracene	610	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Chrysene	640	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Benzo[b]fluoranthene	760	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Benzo[k]fluoranthene	360	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Benzo[a]pyrene	680	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Indeno[1,2,3-cd]pyrene	360	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Dibenz[a,h]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Benzo[g,h,i]perylene	340	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 17:44	
Surrogate: Nitrobenzene-d5	61.7 %	30	- 130		B6A1928	01/19/2016	01/21/2016 17:44	

Analyst: ALB

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Client Sample ID B-16 (0-2) Lab ID: 6010276-05

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	67.9 %	30	- 130		B6A1928	01/19/2016	01/21/2016 17:44	
Surrogate: Terphenyl-d14	64.3 %	30	- 130		B6A1928	01/19/2016	01/21/2016 17:44	

Client Sample ID B-16 (5-7) Lab ID: 6010276-06

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	37	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Selenium	3.7	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Cadmium	ND	0.54	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Chromium	13	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Arsenic	4.9	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Barium	40	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	
Silver	ND	2.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:51	

Semivolatile Organics Method: EPA 8270D

WICHIOU. EIA 6270D							Ν	latrix: Soil
Anglata	Result	RL	Dilution	Prop Mothod	Datah	Properted	Date/Time	Notes
Analyte	(ug/kg ury)	(ug/kg uly)	Difution	Trep Method	Daten	Trepared	Allalyzeu	10003
Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
2-Methyl Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Acenaphthylene	400	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Acenaphthene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Fluorene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Phenanthrene	610	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Fluoranthene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Pyrene	1300	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Benzo[a]anthracene	760	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Chrysene	800	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Benzo[b]fluoranthene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Benzo[k]fluoranthene	510	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Benzo[a]pyrene	1000	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Indeno[1,2,3-cd]pyrene	410	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Dibenz[a,h]anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Benzo[g,h,i]perylene	460	320	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 18:32	
Surrogata: Nitrohanzana d5	59 4 %	30) 130		B6A1028	01/10/2016	01/21/2016 18:32	
Surroguie. mirobenzene-us	57.4 /0	50	-150		DUA1920	01/19/2010	01/21/2010 10.52	

Client Sample ID B-16 (5-7) Lab ID: 6010276-06

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	65.2 %	30	- 130		B6A1928	01/19/2016	01/21/2016 18:32	
Surrogate: Terphenyl-d14	69.9 %	30	- 130		B6A1928	01/19/2016	01/21/2016 18:32	

Client Sample ID B-17 (2-4) Lab ID: 6010276-07

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	98	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Selenium	3.9	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Cadmium	0.61	0.59	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Chromium	13	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Arsenic	3.7	1.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Barium	51	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	
Silver	ND	2.4	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:55	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
2-Methyl Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Acenaphthylene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Acenaphthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Fluorene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Phenanthrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Fluoranthene	750	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Pyrene	700	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Benzo[a]anthracene	470	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Chrysene	450	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Benzo[b]fluoranthene	670	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Benzo[k]fluoranthene	350	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Benzo[a]pyrene	570	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Indeno[1,2,3-cd]pyrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Dibenz[a,h]anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Benzo[g,h,i]perylene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 19:19	
Surrogate: Nitrobenzene-d5	57.7 %	30	- 130		B6A1928	01/19/2016	01/21/2016 19:19	

Analyst: ALB

Client Sample ID B-17 (2-4) Lab ID: 6010276-07

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	73.0 %	30 - 130			B6A1928	01/19/2016	01/21/2016 19:19	
Surrogate: Terphenyl-d14	73.2 %	30	- 130		B6A1928	01/19/2016	01/21/2016 19:19	

Client Sample ID B-17 (5-7) Lab ID: 6010276-08

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyst: ALB

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	39	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Selenium	4.6	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Cadmium	ND	0.56	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Chromium	17	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Arsenic	6.1	1.1	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Barium	37	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	
Silver	ND	2.2	1	EPA 3050B	B6A2107	01/21/2016	01/21/2016 19:59	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
2-Methyl Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Acenaphthylene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Acenaphthene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Fluorene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Phenanthrene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Anthracene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Fluoranthene	600	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Pyrene	540	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Benzo[a]anthracene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Chrysene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Benzo[b]fluoranthene	400	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Benzo[k]fluoranthene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Benzo[a]pyrene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Indeno[1,2,3-cd]pyrene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Dibenz[a,h]anthracene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Benzo[g,h,i]perylene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:07	
Surrogate: Nitrobenzene-d5	58.8 %	30	- 130		B6A1928	01/19/2016	01/21/2016 20:07	

Client Sample ID B-17 (5-7) Lab ID: 6010276-08

Semivolatile Organics Method: EPA 8270D

Matriv	Soil
	2011

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	67.4 %	30 - 130			B6A1928	01/19/2016	01/21/2016 20:07	
Surrogate: Terphenyl-d14	66.0 %	30	- 130		B6A1928	01/19/2016	01/21/2016 20:07	

Client Sample ID B-18 (0-2) Lab ID: 6010276-09

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	69	2.4	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Selenium	3.3	1.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Cadmium	ND	0.59	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Chromium	9.4	2.4	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Arsenic	4.3	1.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Barium	37	2.4	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	
Silver	ND	2.4	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:52	

Semivolatile Organics Method: EPA 8270D

Analyst: ALB Matrix: Soil

	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Naphthalene	400	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
2-Methyl Naphthalene	ND	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Acenaphthylene	540	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Acenaphthene	470	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Fluorene	620	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Phenanthrene	6600	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Anthracene	1700	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Fluoranthene	7900	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Pyrene	6700	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Benzo[a]anthracene	3500	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Chrysene	3300	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Benzo[b]fluoranthene	4300	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Benzo[k]fluoranthene	2000	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Benzo[a]pyrene	3700	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Indeno[1,2,3-cd]pyrene	1500	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Dibenz[a,h]anthracene	370	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Benzo[g,h,i]perylene	1300	360	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 20:55	
Surrogate: Nitrobenzene-d5	57.5 %	30	- 130		B6A1928	01/19/2016	01/21/2016 20:55	

Client Sample ID B-18 (0-2) Lab ID: 6010276-09

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	63.0 %	30 - 130			B6A1928	01/19/2016	01/21/2016 20:55	
Surrogate: Terphenyl-d14	72.6 %	30	- 130		B6A1928	01/19/2016	01/21/2016 20:55	

Client Sample ID B-18 (5-7) Lab ID: 6010276-10

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	9.9	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Selenium	3.3	1.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Cadmium	ND	0.59	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Chromium	8.3	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Arsenic	3.1	1.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Barium	26	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	
Silver	ND	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 17:56	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
2-Methyl Naphthalene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Acenaphthylene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Acenaphthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Fluorene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Phenanthrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Fluoranthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Pyrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Benzo[a]anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Chrysene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Benzo[b]fluoranthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Benzo[k]fluoranthene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Benzo[a]pyrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Indeno[1,2,3-cd]pyrene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Dibenz[a,h]anthracene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Benzo[g,h,i]perylene	ND	350	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 22:51	
Surrogate: Nitrobenzene-d5	58.1 %	30	- 130		B6A1928	01/19/2016	01/21/2016 22:51	

Analyst: ALB

Client Sample ID B-18 (5-7) Lab ID: 6010276-10

Semivolatile Organics Method: EPA 8270D

Matriv	Soil
	2011

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	70.5 %	30 - 130			B6A1928	01/19/2016	01/21/2016 22:51	
Surrogate: Terphenyl-d14	71.1 %	30	- 130		B6A1928	01/19/2016	01/21/2016 22:51	

Client Sample ID B-19 (0-2) Lab ID: 6010276-11

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	150	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Selenium	3.3	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Cadmium	1.2	0.56	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Chromium	19	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Arsenic	3.3	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Barium	72	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	
Silver	ND	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:00	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Phenanthrene	2500	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Anthracene	580	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Fluoranthene	3600	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Pyrene	3200	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Benzo[a]anthracene	1600	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Chrysene	1600	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Benzo[b]fluoranthene	2100	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Benzo[k]fluoranthene	980	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Benzo[a]pyrene	1700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Indeno[1,2,3-cd]pyrene	710	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Dibenz[a,h]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Benzo[g,h,i]perylene	700	340	1	EPA 3545A	B6A1928	01/19/2016	01/21/2016 23:39	
Surrogate: Nitrobenzene-d5	52.7 %	30	- 130		B6A1928	01/19/2016	01/21/2016 23:39	

Analyst: ALB

Client Sample ID B-19 (0-2) Lab ID: 6010276-11

Semivolatile Organics Method: EPA 8270D

Matriv	Soil
	2011

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	64.2 %	30	- 130		B6A1928	01/19/2016	01/21/2016 23:39	
Surrogate: Terphenyl-d14	65.4 %	30	- 130		B6A1928	01/19/2016	01/21/2016 23:39	

Client Sample ID B-21 (0-2) Lab ID: 6010276-12

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyst: ALB

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	130	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Selenium	4.8	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Cadmium	1.1	0.57	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Chromium	15	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Arsenic	4.0	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Barium	67	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	
Silver	ND	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:13	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Phenanthrene	810	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Fluoranthene	1500	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Pyrene	1400	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Benzo[a]anthracene	700	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Chrysene	660	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Benzo[b]fluoranthene	940	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Benzo[k]fluoranthene	440	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Benzo[a]pyrene	810	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Indeno[1,2,3-cd]pyrene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Dibenz[a,h]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Benzo[g,h,i]perylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 00:27	
Surrogate: Nitrobenzene-d5	58.6 %	30	- 130		B6A1928	01/19/2016	01/22/2016 00:27	
Client Sample ID B-21 (0-2) Lab ID: 6010276-12

Semivolatile Organics Method: EPA 8270D

Matriv	Soil
	2011

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	67.5 %	30	- 130		B6A1928	01/19/2016	01/22/2016 00:27	
Surrogate: Terphenyl-d14	70.1 %	30	- 130		B6A1928	01/19/2016	01/22/2016 00:27	

Client Sample ID B-21 (5-7) Lab ID: 6010276-13

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	160	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Selenium	3.6	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Cadmium	1.0	0.55	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Chromium	12	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Arsenic	4.9	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Barium	62	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	
Silver	ND	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:17	

Semivolatile Organics Method: EPA 8270D

Analyst: ALB

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
		22.2	1	EDA 2545A	Denter	01/10/2014	01/00/0015 05 15	
Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
2-Methyl Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Acenaphthylene	340	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Acenaphthene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Fluorene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Phenanthrene	1500	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Anthracene	470	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Fluoranthene	3400	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Pyrene	3100	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Benzo[a]anthracene	1700	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Chrysene	1500	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Benzo[b]fluoranthene	2000	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Benzo[k]fluoranthene	950	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Benzo[a]pyrene	1800	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Indeno[1,2,3-cd]pyrene	680	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Dibenz[a,h]anthracene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Benzo[g,h,i]perylene	650	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 01:15	
Surrogate: Nitrobenzene-d5	53.3 %	30	- 130		B6A1928	01/19/2016	01/22/2016 01:15	

Client Sample ID B-21 (5-7) Lab ID: 6010276-13

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
viati in.	SOIL

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	66.2 %	30	- 130		B6A1928	01/19/2016	01/22/2016 01:15	
Surrogate: Terphenyl-d14	69.8 %	30	- 130		B6A1928	01/19/2016	01/22/2016 01:15	

Client Sample ID B-22 (0-2) Lab ID: 6010276-14

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	8.9	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Selenium	2.6	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Cadmium	ND	0.57	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Chromium	8.1	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Arsenic	2.1	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Barium	27	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	
Silver	ND	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:21	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Phenanthrene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Fluoranthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Pyrene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Benzo[a]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Chrysene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Benzo[b]fluoranthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Benzo[k]fluoranthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Benzo[a]pyrene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Indeno[1,2,3-cd]pyrene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Dibenz[a,h]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Benzo[g,h,i]perylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:02	
Surrogate: Nitrobenzene-d5	54.0 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:02	

Analyst: ALB

Matrix: Soil

Client Sample ID B-22 (0-2) Lab ID: 6010276-14

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	65.5 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:02	
Surrogate: Terphenyl-d14	71.9 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:02	

Client Sample ID B-22 (5-7) Lab ID: 6010276-15

Total Metals Method: EPA 6010C

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	130	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Selenium	5.2	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Cadmium	1.1	0.53	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Chromium	16	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Arsenic	4.8	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Barium	83	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	
Silver	ND	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:25	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
2-Methyl Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Acenaphthylene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Acenaphthene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Fluorene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Phenanthrene	950	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Fluoranthene	1800	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Pyrene	1700	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Benzo[a]anthracene	900	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Chrysene	870	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Benzo[b]fluoranthene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Benzo[k]fluoranthene	560	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Benzo[a]pyrene	1000	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Indeno[1,2,3-cd]pyrene	420	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Dibenz[a,h]anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Benzo[g,h,i]perylene	440	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 02:50	
Surrogate: Nitrobenzene-d5	50.6 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:50	

Analyst: ALB

Matrix: Soil

Analyst: SS

Client Sample ID B-22 (5-7) Lab ID: 6010276-15

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
viati in.	SOIL

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	61.3 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:50	
Surrogate: Terphenyl-d14	64.6 %	30	- 130		B6A1928	01/19/2016	01/22/2016 02:50	

Client Sample ID B-23 (0-2) Lab ID: 6010276-16

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	84	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Selenium	3.5	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Cadmium	0.59	0.54	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Chromium	14	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Arsenic	4.1	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Barium	53	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	
Silver	ND	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:30	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
2-Methyl Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Acenaphthylene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Acenaphthene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Fluorene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Phenanthrene	1200	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Anthracene	390	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Fluoranthene	2100	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Pyrene	1800	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Benzo[a]anthracene	1100	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Chrysene	960	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Benzo[b]fluoranthene	1300	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Benzo[k]fluoranthene	640	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Benzo[a]pyrene	1100	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Indeno[1,2,3-cd]pyrene	430	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Dibenz[a,h]anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Benzo[g,h,i]perylene	410	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 03:38	
Surrogate: Nitrobenzene-d5	54.2 %	30	- 130		B6A1928	01/19/2016	01/22/2016 03:38	

Analyst: ALB

Matrix: Soil

Page 35 of 59

Client Sample ID B-23 (0-2) Lab ID: 6010276-16

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	66.1 %	30	- 130		B6A1928	01/19/2016	01/22/2016 03:38	
Surrogate: Terphenyl-d14	70.7 %	30	- 130		B6A1928	01/19/2016	01/22/2016 03:38	

Client Sample ID B-23 (5-7) Lab ID: 6010276-17

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	67	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Selenium	3.4	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Cadmium	0.80	0.53	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Chromium	23	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Arsenic	3.3	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Barium	57	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	
Silver	ND	2.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:34	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
2-Methyl Naphthalene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Acenaphthylene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Acenaphthene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Fluorene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Phenanthrene	750	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Fluoranthene	1500	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Pyrene	1300	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Benzo[a]anthracene	740	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Chrysene	710	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Benzo[b]fluoranthene	890	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Benzo[k]fluoranthene	460	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Benzo[a]pyrene	780	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Indeno[1,2,3-cd]pyrene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Dibenz[a,h]anthracene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Benzo[g,h,i]perylene	ND	320	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 04:25	
Surrogate: Nitrobenzene-d5	54.5 %	30	- 130		B6A1928	01/19/2016	01/22/2016 04:25	

Analyst: ALB

Matrix: Soil

Client Sample ID B-23 (5-7) Lab ID: 6010276-17

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
viati in.	SOIL

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	67.0 %	30	- 130		B6A1928	01/19/2016	01/22/2016 04:25	
Surrogate: Terphenyl-d14	69.4 %	30	- 130		B6A1928	01/19/2016	01/22/2016 04:25	

Client Sample ID B-24 (0-2) Lab ID: 6010276-18

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	220	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Selenium	8.6	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Cadmium	1.7	0.57	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Chromium	16	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Arsenic	6.3	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Barium	63	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	
Silver	ND	2.3	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:38	

Semivolatile Organics Method: EPA 8270D

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
2-Methyl Naphthalene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Acenaphthylene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Acenaphthene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Fluorene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Phenanthrene	880	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Fluoranthene	2200	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Pyrene	2000	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Benzo[a]anthracene	1100	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Chrysene	1100	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Benzo[b]fluoranthene	1600	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Benzo[k]fluoranthene	730	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Benzo[a]pyrene	1200	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Indeno[1,2,3-cd]pyrene	530	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Dibenz[a,h]anthracene	ND	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Benzo[g,h,i]perylene	510	340	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 05:13	
Surrogate: Nitrobenzene-d5	58.1 %	30	- 130		B6A1928	01/19/2016	01/22/2016 05:13	

Analyst: ALB

Matrix: Soil

Page 39 of 59

Client Sample ID B-24 (0-2) Lab ID: 6010276-18

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	69.3 %	30	- 130		B6A1928	01/19/2016	01/22/2016 05:13	
Surrogate: Terphenyl-d14	71.6 %	30	- 130		B6A1928	01/19/2016	01/22/2016 05:13	

Client Sample ID B-24 (5-7) Lab ID: 6010276-19

Total Metals Method: EPA 6010C Analyst: SS

Matrix: Soil

Analyst: ALB

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	200	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Selenium	1.8	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Cadmium	0.54	0.54	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Chromium	14	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Arsenic	2.8	1.1	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Barium	54	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	
Silver	ND	2.2	1	EPA 3050B	B6A2122	01/21/2016	01/22/2016 18:42	

Semivolatile Organics Method: EPA 8270D

	~ .	~ ~						
	Result	RL					Date/Time	
Analyte	(ug/kg dry)	(ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
2-Methyl Naphthalene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Acenaphthylene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Acenaphthene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Fluorene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Phenanthrene	1200	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Anthracene	360	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Fluoranthene	2200	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Pyrene	2100	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Benzo[a]anthracene	1000	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Chrysene	1000	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Benzo[b]fluoranthene	1300	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Benzo[k]fluoranthene	610	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Benzo[a]pyrene	1200	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Indeno[1,2,3-cd]pyrene	470	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Dibenz[a,h]anthracene	ND	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Benzo[g,h,i]perylene	460	330	1	EPA 3545A	B6A1928	01/19/2016	01/22/2016 06:01	
Surrogate: Nitrobenzene-d5	59.1 %	30	- 130		B6A1928	01/19/2016	01/22/2016 06:01	

Client Sample ID B-24 (5-7) Lab ID: 6010276-19

Semivolatile Organics Method: EPA 8270D

Matrix:	Soil
	~ • • •

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: 2-Fluorobiphenyl	69.3 %	30	- 130		B6A1928	01/19/2016	01/22/2016 06:01	
Surrogate: Terphenyl-d14	73.3 %	30	- 130		B6A1928	01/19/2016	01/22/2016 06:01	

QUALITY CONTROL SECTION

Batch B6A1907 - EPA 160.3 modified

Analyte	Result (%)	RL (%)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Duplicate (B6A1907-DUP1)		Source: 60102	76-19		Prepared: 1/	19/2016 Analyz	ed: 1/19/2016	5	
Total Solids	91	1.0		92			1.24	200	

CET #: 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Batch B6A1928 - EPA 8270D

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6A1928-BLK1)					Prepared: 1	/19/2016 Analyz	zed: 1/21/20	16	
Naphthalene	ND	300							
2-Methyl Naphthalene	ND	300							
Acenaphthylene	ND	300							
Acenaphthene	ND	300							
Fluorene	ND	300							
Phenanthrene	ND	300							
Anthracene	ND	300							
Fluoranthene	ND	300							
Pyrene	ND	300							
Benzo[a]anthracene	ND	300							
Chrysene	ND	300							
Benzo[b]fluoranthene	ND	300							
Benzo[k]fluoranthene	ND	300							
Benzo[a]pvrene	ND	300							
Indeno[1,2,3-cd]pyrene	ND	300							
Dibenz[a,h]anthracene	ND	300							
Benzo[g,h,i]perylene	ND	300							
Surrogate: Nitrobenzene-d5					65.7	30 - 130			
Surrogate: 2-Fluorobiphenyl					74.1	30 - 130			
Surrogate: Terphenyl-d14					77.1	30 - 130			
LCS (B6A1928-BS1)					Prepared: 1/	/19/2016 Analyz	zed: 1/21/20	16	
Naphthalene	2540	300	4,000.000		63.4	40 - 140			
2-Methyl Naphthalene	2690	300	4,000.000		67.2	40 - 140			
Acenaphthylene	2680	300	4,000.000		67.1	40 - 140			
Acenaphthene	2680	300	4,000.000		67.1	40 - 140			
Fluorene	2890	300	4,000.000		72.3	40 - 140			
Phenanthrene	2930	300	4,000.000		73.2	40 - 140			
Anthracene	2940	300	4,000.000		73.6	40 - 140			
Fluoranthene	3110	300	4,000.000		77.8	40 - 140			
Pyrene	3150	300	4,000.000		78.8	40 - 140			
Benzo[a]anthracene	3130	300	4,000.000		78.2	40 - 140			
Chrysene	3170	300	4,000.000		79.3	40 - 140			
Benzo[b]fluoranthene	3340	300	4,000.000		83.4	40 - 140			
Benzo[k]fluoranthene	3990	300	4,000.000		99.6	40 - 140			
Benzo[a]pyrene	3510	300	4,000.000		87.8	40 - 140			
Indeno[1,2,3-cd]pyrene	3010	300	4,000.000		75.4	40 - 140			
Dibenz[a,h]anthracene	3120	300	4,000.000		77.9	40 - 140			
Benzo[g,h,i]perylene	2700	300	4,000.000		67.4	40 - 140			
Surrogate: Nitrobenzene-d5					64.7	30 - 130			
Surrogate: 2-Fluorobiphenyl					73.0	30 - 130			
Surrogate: Terphenyl-d14					75.5	30 - 130			
Duplicate (B6A1928-DUP1)		Source: 6010	276-19		Prepared: 1	/19/2016 Analyz	zed: 1/22/20	16	
Naphthalene	ND	330		ND				30	
2-Methyl Naphthalene	ND	330		ND				30	
Acenaphthylene	ND	330		ND				30	
Acenaphthene	ND	330		ND				30	
Fluorene	ND	330		ND				30	
Phenanthrene	994	330		1220			20.2	30	
Anthracene	ND	330		361				30	

Complete Environmental Testing, Inc.

CET #: 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Duplicate (B6A1928-DUP1) - Continued		Source: 60102	76-19		Prepared: 1	/19/2016 Analyz	zed: 1/22/201	16	
Fluoranthene	1820	330		2190			18.4	30	
Pyrene	1790	330		2090			15.1	30	
Benzo[a]anthracene	919	330		1040			12.6	30	
Chrysene	895	330		1000			11.3	30	
Benzo[b]fluoranthene	1150	330		1260			9.05	30	
Benzo[k]fluoranthene	539	330		612			12.8	30	
Benzo[a]pyrene	1060	330		1150			8.02	30	
Indeno[1,2,3-cd]pyrene	401	330		475			16.8	30	
Dibenz[a,h]anthracene	ND	330		ND				30	
Benzo[g,h,i]perylene	450	330		457			1.67	30	
Surrogate: Nitrobenzene-d5					59.6	30 - 130			
Surrogate: 2-Fluorobiphenyl					71.0	30 - 130			
Surrogate: Terphenyl-d14					74.2	30 - 130			
Matrix Spike (B6A1928-MS1)		Source: 60102	76-19		Prepared: 1	/19/2016 Analyz	zed: 1/22/201	16	
Naphthalene	2550	330	4,335.912	ND	58.9	40 - 140			
2-Methyl Naphthalene	3160	330	4,335.912	ND	72.9	40 - 140			
Acenaphthylene	2810	330	4,335.912	ND	64.7	40 - 140			
Acenaphthene	2620	330	4,335.912	ND	60.5	40 - 140			
Fluorene	2790	330	4,335.912	ND	64.3	40 - 140			
Phenanthrene	3800	330	4,335.912	1220	59.5	40 - 140			
Anthracene	3020	330	4,335.912	361	61.3	40 - 140			
Fluoranthene	4960	330	4,335.912	2190	63.8	40 - 140			
Pyrene	4860	330	4,335.912	2090	63.9	40 - 140			
Benzo[a]anthracene	3840	330	4,335.912	1040	64.6	40 - 140			
Chrysene	3800	330	4,335.912	1000	64.5	40 - 140			
Benzo[b]fluoranthene	4690	330	4,335.912	1260	78.9	40 - 140			
Benzo[k]fluoranthene	4670	330	4,335.912	612	93.6	40 - 140			
Benzo[a]pyrene	4310	330	4,335.912	1150	72.8	40 - 140			
Indeno[1,2,3-cd]pyrene	2550	330	4,335.912	475	47.7	40 - 140			
Dibenz[a,h]anthracene	2420	330	4,335.912	ND	55.8	40 - 140			
Benzo[g,h,i]perylene	2180	330	4,335.912	457	39.8	40 - 140			\mathbf{L}
Surrogate: Nitrobenzene-d5					60.4	30 - 130			
Surrogate: 2-Fluorobiphenyl					64.1	30 - 130			
Surrogate: Terphenyl-d14					67.8	30 - 130			

CET # : 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Batch B6A2013 - EPA 7471B

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6A2013-BLK1)					Prepared: 1	/20/2016 Analyz	ed: 1/20/2010	5	
Mercury	ND	0.20							
LCS (B6A2013-BS1)					Prepared: 1	/20/2016 Analyz	ed: 1/20/2010	5	
Mercury	2.37	0.20	2.500		94.7	80 - 120			
Duplicate (B6A2013-DUP1)		Source: 60102	276-04		Prepared: 1	/20/2016 Analyz	ed: 1/20/2010	5	
Mercury	0.0192	0.24		0.0172			10.9	20	
Matrix Spike (B6A2013-MS1)		Source: 60102	276-04		Prepared: 1	/20/2016 Analyz	ed: 1/20/2010	5	
Mercury	3.12	0.24	3.002	0.0172	103	80 - 120			
Matrix Spike Dup (B6A2013-MSD1)		Source: 6010276-04 Prepared: 1/20/2016 Analyzed: 1/20/2016							
Mercury	3.06	0.24	3.002	0.0172	101	80 - 120	1.94	20	

CET # : 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Batch B6A2103 - EPA 7471B

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6A2103-BLK1)					Prepared: 1	/21/2016 Analyz	zed: 1/21/2016)	
Mercury	ND	0.20							
LCS (B6A2103-BS1)					Prepared: 1	/21/2016 Analyz	zed: 1/21/2016		
Mercury	2.45	0.20	2.500		97.9	80 - 120			
Duplicate (B6A2103-DUP1)		Source: 60102	276-19		Prepared: 1	/21/2016 Analyz	zed: 1/21/2016	<u>,</u>	
Mercury	0.201	0.22		0.196			2.59	20	
Matrix Spike (B6A2103-MS1)		Source: 6010	276-19		Prepared: 1	/21/2016 Analyz	zed: 1/21/2016	,	
Mercury	3.14	0.22	2.710	0.196	109	80 - 120			
Matrix Spike Dup (B6A2103-MSD1)		Source: 60102	276-19		Prepared: 1	/21/2016 Analyz	zed: 1/21/2016)	
Mercury	3.12	0.22	2.710	0.196	108	80 - 120	0.866	20	

CET #: 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Batch B6A2107 - EPA 6010C

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6A2107-BLK1)					Prepared: 1/2	1/2016 Analyze	d: 1/21/2016		
Lead	ND	2.0							
Selenium	ND	1.0							
Cadmium	ND	0.50							
Chromium	ND	2.0							
Arsenic	ND	1.0							
Barium	ND	2.0							
Silver	ND	2.0							
LCS (B6A2107-BS1)					Prepared: 1/2	1/2016 Analyze	d: 1/21/2016		
Lead	23.4	2.0	25.000		93.7	80 - 120			
Selenium	48.0	1.0	50.000		96.0	80 - 120			
Cadmium	23.7	0.50	25.000		95.0	80 - 120			
Chromium	23.9	2.0	25.000		95.5	80 - 120			
Arsenic	23.6	1.0	25.000		94.2	80 - 120			
Barium	24.5	2.0	25.000		97.9	80 - 120			
Silver	4.81	2.0	5.000		96.2	80 - 120			

CET #: 6010276

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Batch B6A2122 - EPA 6010C

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6A2122-BLK1)					Prepared: 1/	21/2016 Analyz	zed: 1/22/201	6	
Lead	ND	2.0							
Selenium	ND	1.0							
Cadmium	ND	0.50							
Chromium	ND	2.0							
Arsenic	ND	1.0							
Barium	ND	2.0							
Silver	ND	2.0							
LCS (B6A2122-BS1)					Prepared: 1/	21/2016 Analyz	zed: 1/22/201	6	
Lead	23.2	2.0	25.000		92.6	80 - 120			
Selenium	46.9	1.0	50.000		93.8	80 - 120			
Cadmium	23.7	0.50	25.000		94.8	80 - 120			
Chromium	23.7	2.0	25.000		94.6	80 - 120			
Arsenic	23.5	1.0	25.000		93.9	80 - 120			
Barium	23.6	2.0	25.000		94.2	80 - 120			
Silver	4.45	2.0	5.000		88.9	80 - 120			

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

1 Lit

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. 80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention time, calculate relative response, and quantify analytes of interest
Surrogate Recovery	The % recovery for non-tarer organic compounds that are spiked into all samples. Used to determine method performance.
Continuing Calibration	An analytical standard analyzed with each set of samples to verify initial calibration of the system.
Batch	Samples that are analyzed together with the same method, sequence and lot of reagents within the same time period.
ND	Not detected
RL	Reporting Limit
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high
	concentration of target compounds.
Duplicate	Result from the duplicate analysis of a sample.
Result	Amount of analyte found in a sample.
Spike Level	Amount of analyte added to a sample
Matrix Spike Result	Amount of analyte found including amount that was spiked.
Matrix Spike Dup	Amount of analyte foun in duplicate spikes including amount that was spike.
Matrix Spike % Recovery	% Recovery of spiked amount in sample.
Matrix Spike Dup % Recovery	% Recovery of spiked duplicate amount in sample.
RPD	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
Blank	Method Blank that has been taken through all steps of the analysis.
LCS % Recovery	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
Recovery Limits	A range within which specified measurements results must fall to be compliant.
CC	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York Certification 11982 Rhode Island Certification 199

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Project Location: Riverside Apts, Ansonia

Laboratory Sample ID(s):

6010276-01 thru 6010276-19

List RCP Methods Used:

EPA 6010C, EPA 7471B, EPA 8270D

Client: Payne Environmental

Project Number: 15.127/001
Sample Date(s):

01/06/2016, 01/12/2016, 01/13/2016, 01/14/2016

CET #: 6010276

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes 🗋 No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes □ No ✓ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	yes □ No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	yes □ No □ N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes 🔽 No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
5b	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🖌 No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information

must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

re: Litt

Position: Laboratory Director

Printed Name: David Ditta

Date: 01/25/2016

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

RCP Case Narrative

4- See Exceptions Report Below

6- The client requested a subset of the RCP metals and CT 8270 list.

		4- Exce	ptions Repor	t		
					Recovery	Batch/Sequence
Analyte	QC Type	Exception	Result	RPD	(%)	Sample ID
Benzo[g,h,i]perylene	MS	Low			39.8	6010276-19

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
B6A2107	S6A2111	6010276-01	B-14 (0-2)	EPA 6010C	Soil	01/06/2016
B6A2107	S6A2111	6010276-02	B-14 (7-9)	EPA 6010C	Soil	01/06/2016
B6A2107	S6A2111	6010276-03	B-15 (2.5-4.5)	EPA 6010C	Soil	01/12/2016
B6A2107	S6A2111	6010276-04	B-15 (5-7)	EPA 6010C	Soil	01/12/2016
B6A2107	S6A2111	6010276-05	B-16 (0-2)	EPA 6010C	Soil	01/13/2016
B6A2107	S6A2111	6010276-06	B-16 (5-7)	EPA 6010C	Soil	01/13/2016
B6A2107	S6A2111	6010276-07	B-17 (2-4)	EPA 6010C	Soil	01/12/2016
B6A2107	S6A2111	6010276-08	B-17 (5-7)	EPA 6010C	Soil	01/12/2016
B6A2122	S6A2207	6010276-09	B-18 (0-2)	EPA 6010C	Soil	01/13/2016
B6A2122	S6A2207	6010276-10	B-18 (5-7)	EPA 6010C	Soil	01/13/2016
B6A2122	S6A2207	6010276-11	B-19 (0-2)	EPA 6010C	Soil	01/13/2016
B6A2122	S6A2207	6010276-12	B-21 (0-2)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-13	B-21 (5-7)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-14	B-22 (0-2)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-15	B-22 (5-7)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-16	B-23 (0-2)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-17	B-23 (5-7)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-18	B-24 (0-2)	EPA 6010C	Soil	01/14/2016
B6A2122	S6A2207	6010276-19	B-24 (5-7)	EPA 6010C	Soil	01/14/2016
B6A2013		6010276-01	B-14 (0-2)	EPA 7471B	Soil	01/06/2016
B6A2013		6010276-02	B-14 (7-9)	EPA 7471B	Soil	01/06/2016
B6A2013		6010276-03	B-15 (2.5-4.5)	EPA 7471B	Soil	01/12/2016
B6A2013		6010276-04	B-15 (5-7)	EPA 7471B	Soil	01/12/2016
B6A2013		6010276-05	B-16 (0-2)	EPA 7471B	Soil	01/13/2016
B6A2013		6010276-06	B-16 (5-7)	EPA 7471B	Soil	01/13/2016
B6A2013		6010276-07	B-17 (2-4)	EPA 7471B	Soil	01/12/2016
B6A2013		6010276-08	B-17 (5-7)	EPA 7471B	Soil	01/12/2016
B6A2103		6010276-09	B-18 (0-2)	EPA 7471B	Soil	01/13/2016
B6A2103		6010276-10	B-18 (5-7)	EPA 7471B	Soil	01/13/2016
B6A2103		6010276-11	B-19 (0-2)	EPA 7471B	Soil	01/13/2016
B6A2103		6010276-12	B-21 (0-2)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-13	B-21 (5-7)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-14	B-22 (0-2)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-15	B-22 (5-7)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-16	B-23 (0-2)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-17	B-23 (5-7)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-18	B-24 (0-2)	EPA 7471B	Soil	01/14/2016
B6A2103		6010276-19	B-24 (5-7)	EPA 7471B	Soil	01/14/2016
B6A1928	S6A2114	6010276-01	B-14 (0-2)	EPA 8270D	Soil	01/06/2016
B6A1928	S6A2114	6010276-02	B-14 (7-9)	EPA 8270D	Soil	01/06/2016
B6A1928	S6A2114	6010276-03	B-15 (2.5-4.5)	EPA 8270D	Soil	01/12/2016
B6A1928	S6A2114	6010276-04	B-15 (5-7)	EPA 8270D	Soil	01/12/2016
B6A1928	S6A2114	6010276-05	B-16 (0-2)	EPA 8270D	Soil	01/13/2016
B6A1928	S6A2114	6010276-06	B-16 (5-7)	EPA 8270D	Soil	01/13/2016
B6A1928	S6A2114	6010276-07	B-17 (2-4)	EPA 8270D	Soil	01/12/2016
B6A1928	S6A2114	6010276-08	B-17 (5-7)	EPA 8270D	Soil	01/12/2016
B6A1928	S6A2114	6010276-09	B-18 (0-2)	EPA 8270D	Soil	01/13/2016
B6A1928	S6A2114	6010276-10	B-18 (5-7)	EPA 8270D	Soil	01/13/2016

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007

Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

B6A1928	S6A2114	6010276-11	B-19 (0-2)	EPA 8270D	Soil	01/13/2016
B6A1928	S6A2114	6010276-12	B-21 (0-2)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-13	B-21 (5-7)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-14	B-22 (0-2)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-15	B-22 (5-7)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-16	B-23 (0-2)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-17	B-23 (5-7)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-18	B-24 (0-2)	EPA 8270D	Soil	01/14/2016
B6A1928	S6A2114	6010276-19	B-24 (5-7)	EPA 8270D	Soil	01/14/2016

нан спагуе птау арргу. * IAI begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day.

REV. 12/11

ç the flext pushess day.

Ľ	-1/01 12		> > will of a	いない !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			122		1		ship	5 100	200	ice	ר ג	aha	he	אל אל	re receive	mnles a	the sa	when	reains	TAT b	olv. **	nav app	charge r	itional o	* Add
			N S		ę	' °	$ \mathcal{C} $	3	X	ing:	Cooli Rece	be of	/iden₀ mp ∪	힉끠				6~	128-	82	5-	Fax #		0	و معر م د	1285	\$15,	ショー ショー ショー	Pho Pho
`	NA C					ע			2	-		Ψ	b Us	5		1	3	S	5	NON	L.M.	J. Ca	2		B		14NS	1	7
	300	SWP P Other (specify)	GR GR	49 [ie)	eck of	ts (ch	u Limi	portin	i'R Re	R						E-mail								port Toy	Rep
	Ŕ	Other)F D Excel	R	<u>≕</u>	Emai	ρl					port	ita Re	D			and the second second	1					2	ç	5	アップ			(
		RCP Pkg * DOAW *	/MSD) *	fic (MS	Specif	Site S			Std				VQC	Q					Zin				afe	St C			Nº C	-1	
		MRCK, BG	Collector(s):				0	\sim	20	105	Re		cation	5										5		2 S	2 8 7 8 7 8	~\siress	Adc
		15.127 1001	Project #:			2	AP		R	R	NK	R	oject:	Pr						Ċ	2	n C	のとて	LE Z	Por	L'S	s ame		
-			nformation P0 #:	ject l	Proj	al _i	JI/	$\langle \rangle$	2.	īn	H L	Sontac	oject (Pn									n	natio	nforn	ting l	Repor	ient /	2
) BY:	ECEIVEL	Ŗ		'E/TIME	ĎAT			HED BY:	LINQUIS	RE
		L'	(POJKC		Ĭ	JW.	- X - J	\mathcal{O}	~	XI	1) BY:	ECEIVE	Ŗ		ENTIME	L B	2-1-	1.	HED BY:	LINOUIS	RE
))TES	N				D.	BY NO	ECEIVEI	K.		ET IME	L DA		as y	В	LINQUE	E H
												\vdash	\mathbb{R}	\square				e)	E=Encor	- Vial	ater F	W=W	isulfate		Р	M=Me	s Only	il VOC	s l
\leq	-0						-										h	- ²	C	() (T	0-Oth	-Vial, C	ass, V-	G-Gla	lastic,	(P-P	ERTYP	NTAIN	8
	2																ľ.	0	O-Other)	C=Cool,	laOH,	4, Na-N	-H ₂ SO ₄	VO3, S-	I, N-HI	(CI-HCI	ATIVE	ESERV	PR
	-																			- e									
															/				N.K.	201	Ś	d lib	1		þ	5-2	F F	j.	B
	~						~												>	vdcc.	2					\$		20-21	3
	~						1								-					00	12	i.s	Ē	4		5		5	3
	<										-									20 M	11:	6	F			Ce-	6	53	5
	/									>									5 ⁷	:05 m	0					Ľ	1	7.2	3
	<						-													15 em	9	6	<u> </u>			j.	6	5	9
	<						4											<u> </u>		<u>8</u>	8.19	E.	4			ŗ	5	21	3
							1													C	C30	6	IM	1		Ċ	0	ŝ.	B
	~						~				44.								SIC	Sam	0)	6	13			2	0	19	8
NUTE #	TOTAL # (Lab To Fil	SPLP	TCLP	8 RCRA TOTAL	13 Priorit	Herbicide	Pesticide	8270 PN/	8270 CT	CT ETPH	8260 Aro	8260 CT	Std (5-7 Da	2-3 Days	Next Day	Same Da	olid ^r ipe ther (Specify)	 0 ≥ 0	Time	ate/1	D			e ID	Samp		
	OF C		lter				y Pol	s	s	As	List	1	mati	List	ys)	*	, *	≤. ∗ v	W=Drinking V =Cassette	ă o o	lbs.cc	@cetla	rders (ottleoi	hail: bo	est e-m	e Requ	Bottl	
	CONT.												CS		ie)	me "	(che		=Soil '=Water	Ξ N Ξ Ν	77-99. abs.cc	03) 37 @cetta	-ax: (2	-mail:	n	06615	ord, CT	Stratfo	
	·	Additional Analysis	apply)	all that	heck a	als (ci	Meta	ļ .	-	S:	gani	ļõ	-		nd	arou	Turn		Matrix =Air	34 A	77-99	03) 37	Tel: (2			/e	pes Dri	80 Lu	
Pani			CET:				- -		l, lionar					1	.			-				3, INC.	TESTING	ENTAL	IRONM	ETE ENV	COMPL]
			Client			9		0	Ĩ	< 7		יג ב	Ë	Π	_							ł	and the second se	and the state of the		\langle			
57 (Date and Time in Freezer																						C	F		_		
of 50		Soils Only:	Volatile																575	601			3	2					
<u> </u>			CET #_																						/	\rangle			

а спагуе тау аррту. * IAI begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day.

REV. 12/11

ç the flext pushess day.

Ľ	1/01 1/1		m will otart	5,0	2	1212	2	1	500	٦ 5	え ナ		0 0	500	lice	2 2	2 40	hol	2	re receive	nnles a	וגא סר וגא	hen t	nins w	FAT be	F **	anplv.	ae may	nal chai	Additio
			N SH		or	റ്		\cap	0	2	ling:	Coo	ce oʻ Jpon	/iden mp L	희미					- 1282	22	19 -	Fax #	_	0	×	285	<u>Y</u>	42	Phone -
`	MC				.	-))			2		6	@. -	sU di	5		7	3	E.		NG	2	0	L (ce	2	B	5	Z Š.	AL	Ę
	100	SWP Cother (specify)	Я GR	A D L	_				one)	heck	nits (c	na Lin	portir	SR Re	77			ſ		Ce	E-mail								10:5	Report
	K.	Other	Excel			mail	M						port	ıta Re					_	0				1	0	~	いたい	I 7	E	2
		RCP Pkg * DQAW *	ASD) *) (MS/N	ecific	te Sp	⊔ Si		_	∐ Sto				∆QC	p					Zin				0	Stat	C	(Ş	
		WRCH, BG	Collector(s):	1			19	0	2	L	asi	Pu		catior	5							e			1	~	Ē		- () 	Addres
		5.127 /001	Project #:	I		$ \gamma $	7	A	A	10	595	JVI.	R	oject:	ק						Ĉ	3	č	271	Ž	L L L	3600	D	Ny Name	Compa
			formation PO #:	≥ct In	roje	P	T a,	2	5	12.	Re-	ot:	Conta	oject	 										ation	orma	ig Inf	portir	nt/Re	Clier
																				BY:	CEIVED	RE		TIME	DATE		`	θΡΫ́:	ÚUISHE	RELIN
		Ľ	POJRC		-1	SUN	N9	X,	m	0	X									BY:	CEIVED	RE	1	TIME	, DATE	de 1	6	0 BY:	DUISHEI	RELIN
			J											DTE	Ž				S.	BX	CEIVED	AR		6 IME	DA DA	6	12	, Ka	JUISHE	HELIN
													\vdash	$\left \right\rangle$	\square			1	No.	E=Encore	= Vial	ter F	W=Wa	ulfate	B= Bist		/=MeOł			Soil V
\leq	-0																	h		6		-Othe	/ial, O-	ss, V-V	Glas	stic, G	P-Plas	TYPE	AINER	CONT
	2																	Ì	2	0–Other)	Cool,	10H, (Na-Na	- ₂SO4,)3, S-I	N-HNC	-HCI, N	VE (CI	ERVATI	PRES
	-							ACC IN COLORING													d			-						
	/										1					/				K	20/1	2	6	1.14			5	1's	2 L	B.
	~										5										N CC	Ĵ.	5	5		2	6	6	12	30-0
	~						1				1										60	12	5	E	95		Ľ	S-	ىن	5-2
	/																	1			N and	11:2	6	4	-		, P	0-		6-2
	1						-				>						1				2	0	16	Ē			F	N	P	6-2
	~						~	-							İ		+				15 mm	9:0	6	R	1		ŗ	0-0	2	B-X
	<						1				-							-			63	21:3	8	4			ľ	1.	6	B-J
							1															C3(6	MM	-		μ	C- 0		B-2
	1						1													SIL	S MA	0	6	13/1	1		Ÿ	2-2	12	B-1
	TOTAL #		Lab To Fi	SPLP Field Filte	TCLP	TOTAL	8 RCRA	13 Priorit	Herbicide	PCBs	8270 PN	8270 CT	CT ETPH	8260 Aro	8260 CT	Std (5-7 Da	2-3 Days	Next Day	Same Da	blid her (Specify)	Q & 0	ime	ute/Ti	Da			ē	mple	Sa	
	OF C		lter	ered				y Pol	 es		As	List	-uyer H	mati	List	iys)	*	,*	y *	V=Drinking W. =Cassette	: ת קיי	os.co	cetlat	lers@	tleorc	il: bot	e-mai	equest	ottle R	
	CONT.							11					15	cs		ie)	ck on	(chec		-Soil =Water	∃ N ≷ທ∶	7-995 DS.CO	3) 37 cetlat	ux: (20 pet1 @	Fa	e-n	615	CT 06	ratford,	ស្
	·	Additional Analysis	yply)	II that a	∍ck alı) (che	etals	Mŧ	-	-	lics	rgan	0	-		nd	arou	Turn		Matrix ⊧ ^{⊿ir}	4 	7-998	3) 37	əl: (20	7			Drive	Lupes	80
Pan			CET:							E Star	F	(1	,			-		-		INC.	STING,	ITAL TE	ONMEN	ENVIRO	MPLETE	C	
			Client				Ĵ	ך ת	Ú.	D	X	Ő	S T	S	Ť	_								Constant of the local division of the local	and the state of the			/		
50 /		Date and Time in Freezer																							L	F		Γ		
of 50		oils Only:	Volatile S																	276	601	atterio con Sinterio			<u>_</u>		\sum	$\overline{}$		
h			CET #																								$\langle \rangle$	\setminus		

Client:

Dr. Neil Payne Payne Environmental 85 Willow St. New Haven, CT 06511

Analytical Report CET# 6020016

Report Date:February 03, 2016 Project: Riverside Apts, Ansonia Project Number: 15.127/001

Connecticut Laboratory Certificate: PH 0116 Massachusetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

SAMPLE SUMMARY

The sample(s) were received at 4.1°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-1 MW-2 MW-3	6020016-01 6020016-02 6020016-03 6020016-04	Water Water Water	1/31/2016 8:45 1/31/2016 9:15 1/31/2016 8:55 1/31/2016 0:00	02/01/2016 02/01/2016 02/01/2016 02/01/2016
TB	6020016-04 6020016-05	Water	1/31/2016 9.00	02/01/2018

Client Sample ID MW-1 Lab ID: 6020016-01

Volatile Organics Method: EPA 8260C

Analyst: JS

Matrix: Water

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Chloromethane	ND	2.7	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Bromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Chloroethane	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Acetone	ND	50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Acrylonitrile	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	*F2
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	*F2
Methylene Chloride	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	*F2
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
2,2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Chloroform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Tetrahydrofuran	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Benzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Trichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Dibromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
cis-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Toluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
trans-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
2-Hexanone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1,2-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,3-Dichloropropane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	

Client Sample ID MW-1 Lab ID: 6020016-01

Volatile Organics Method: EPA 8260C

Analyst: JS

Matrix: Water

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Chlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Ethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
m+p Xylenes	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
o-Xylene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Styrene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Bromoform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Bromobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Naphthalene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:24	
Surrogate: 1,2-Dichloroethane-d4	98.2 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:24	
Surrogate: Toluene-d8	99.1 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:24	
Surrogate: 4-Bromofluorobenzene	97.6 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:24	
Client Sample ID MW-2 Lab ID: 6020016-02

Volatile Organics Method: EPA 8260C

Analyst: JS

Analyte (ug1.) (ug1.) Dilution Prep Method Batch Prepared Analyzed Noles Dicklarodifluoromethane ND 2.7 1 EPA 5030C Be80213 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 02/02/2016 13.46 Viny Chloride ND 1.6 1 EPA 5030C B680213 02/02/2016 02/02/2016 13.46 Chloromethane ND 5.0 1 EPA 5030C B680213 02/02/2016 02/02/2016 13.46 Acstone Acstone ND 5.0 1 EPA 5030C B680213 02/02/2016 02/02/2016 13.46 **2 1.1-Dickhorothone ND 5.0 1 EPA 5030C B680213 02/02/2016 02/02/2016 13.46 **2 Methylene Chloride ND 1.0 1 EPA 5030C B680213 02/02/2016 02/02/2016 13.46 **2 Li-Dickhorothane ND 1.0		Result	RL					Date/Time	
Dickbordithuromethane ND 10 I EPA 5030C B680213 0.2022016 0.2022016 0.2022016 0.30222016	Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Dehloradhuoromethane ND 10 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 Vinyl Chlorids ND 1.6 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 Bromomethane ND 1.0 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 Chlorothane ND 5.0 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 Acetone ND 5.0 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 **2 Acetone ND 5.0 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 **2 Actone ND 1.0 1 EPA 5030C B680213 0.2022016 13.46 **2 Methylac-Glunoethene ND 5.0 1 EPA 5030C B680213 0.2022016 13.46 **2 Methylac-Glunoethene ND 1.0 1									
Choromethane ND 2.7 I EPA 5030C B660213 0.2022016 0.2022016 13.46 Wind Chloride ND 1.6 I EPA 5030C B680213 0.2022016 0.2022016 13.46 Romomethane ND 5.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 Choroethane ND 5.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 Acetone ND 5.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 "12 I.1-Dichlorothane ND 5.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 "12 I.1-Dichlorothane ND 1.0 I EPA 5030C B680213 0.2022016 13.46 "12 I.1-Dichlorothane ND 1.0 I EPA 5030C B680213 0.2022016 13.46 "12 I.1-Dichlorothane ND 1.0 I <td>Dichlorodifluoromethane</td> <td>ND</td> <td>10</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	Dichlorodifluoromethane	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Vinyl Choride ND 1.6 1 LPA 5030C B660213 0.0202016 0.202016 1.346 Bromomethane ND 0 0 I FPA 5030C B660213 0.2022016 0.2022016 1.346 Chloroethane ND 2.5 I FPA 5030C B660213 0.2022016 0.2022016 1.346 Acetone ND 0.50 I EPA 5030C B660213 0.2022016 0.2022016 1.346 "*2 Actylonitrile ND 0.50 I EPA 5030C B660213 0.2022016 0.2022016 1.346 "*2 Methylene Chloride ND 5.0 I EPA 5030C B660213 0.2022016 0.2022016 1.346 "*2 Methyl-Bethy (ChTBE) ND 5.0 I EPA 5030C B660213 0.2022016 0.2022016 1.346 "*2 J.1-Dichloroethane ND 1.0 I EPA 5030C B660213 0.2022016 1.346 I/1.10:1.46 I/1.1.10:1.46 <td>Chloromethane</td> <td>ND</td> <td>2.7</td> <td>l</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	Chloromethane	ND	2.7	l	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Bromomethane ND 1.0 1.0 EPA 5030C B660213 2020216 2020216 3346 Trichlorofhuoromethane ND 5.0 1 EPA 5030C B660213 2020216 0202216 13.46 Acetone ND 5.0 1 EPA 5030C B660213 2020216 02022016 13.46 Acetone ND 5.0 1 EPA 5030C B660213 2020216 02022016 13.46 *72 Trichloroffiborothene ND 1.0 1 EPA 5030C B660213 02022016 02022016 13.46 *72 Trichloroffiborothene ND 1.0 1 EPA 5030C B660213 02022016 02022016 13.46 *12 Chrob Distifibd ND 1.0 1 EPA 5030C B660213 02022016 02022016 13.46 *12 Li-Dichlorothene ND 1.0 1 EPA 5030C B660213 02022016 02022016 13.46 *12 Li-Dichlor	Vinyl Chloride	ND	1.6	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Chlorechane ND 5.0 1 EPX 5030C B680213 0.2022016 0.2022016 0.32022016 Trichlorofluoromethane ND 5.0 1 EPX 5030C B680213 0.2022016 0.2022016 0.32022	Bromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Trichloroduoromethane ND 25 1 EPA 5030C 6680213 02/02/016 02/02/2016 13:46 Acetone ND 0.50 1 EPA 5030C 6680213 02/02/016 02/02/016 13:46 Acylonitrilio ND 0.50 1 EPA 5030C 6680213 02/02/016 02/02/016 13:46 "*2 1,1-Dichloroethane ND 1.0 EPA 5030C 6680213 02/02/016 02/02/2016 13:46 "*2 Methylen Chloride ND 1.0 I EPA 5030C 6680213 02/02/016 02/02/016 3:46 "*2 Methylen-Ehlorotethane ND 1.0 I EPA 5030C 6680213 02/02/016 02/02/016 3:46 "*2 1.1,1-Dichlorotethane ND 1.0 I EPA 5030C 6680213 02/02/016 02/02/016 3:46 "*2 2.2-Dichloropropane ND 1.0 I EPA 5030C 6680213 02/02/016 02/02/016 3:46 "*2	Chloroethane	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Acetone ND 50 1 EPA 5030C 6680213 02/02/016 02/02/016 13:46 Acrylonitrile ND 0.50 EPA 5030C B680213 02/02/016 02/02/016 13:46 **72 1,1-Dichloroethene ND 1.0 I EPA 5030C B680213 02/02/016 02/02/016 13:46 **72 Methylenc Chloride ND 5.0 I EPA 5030C B680213 02/02/016 02/02/2016 3:46 **72 Methylenc Chloride ND 5.0 I EPA 5030C B680213 02/02/016 02/02/2016 3:46 **72 Methyl-Butyl Ether (MTBE) ND 5.0 I EPA 5030C B680213 02/02/016 02/02/016 3:46 **72 Subtanoe (MEK) ND 2.5 I EPA 5030C B680213 02/02/016 02/02/016 3:46 **12 2.1 EDA 5030C B680213 02/02/016 02/02/016 3:46 **12 3:46 **12 3:	Trichlorofluoromethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Acrylamithe ND 0.50 1 EPA 5030C B680213 0.2022016 0.2022016 13.46 "T2 Trichlorotriflorotehne ND 1.0 IPA 5030C B680213 0.2022016 0.2022016 13.46 "T2 Methylene Chloride ND 5.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 "T2 Methylene Chloride ND 1.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 "T2 Methylene Chloride ND 1.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 "T2 Methylene MTBE) ND 1.0 I EPA 5030C B680213 0.2022016 0.2022016 13.46 IT IT IT IT IT IT 0.2022016 0.2022016 13.46 IT IT <td< td=""><td>Acetone</td><td>ND</td><td>50</td><td>1</td><td>EPA 5030C</td><td>B6B0213</td><td>02/02/2016</td><td>02/02/2016 13:46</td><td></td></td<>	Acetone	ND	50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Trichloroctifluo	Acrylonitrile	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1-Dickloroethene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 **F2 Methylene Chloride ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 **F2 Methyl-Buyl Ether (MTBE) ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 **F2 Methyl-Buyl Ether (MTBE) ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 **F2 Subhoroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 ** 2-Butanone (MEK) ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 ** 2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13.46 ** 1,1-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02	Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	*F2
Methylene Chloride ND 5.0 1 EPA 5030C B6B0213 0202/2016 02/02/2016 13:46 Carbon Disulfide ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 **2 Methyl-Hautyl Ether (MTBE) ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 **2 Methyl-Hautyl Ether (MTBE) ND 1.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 ** 1.1-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 * 2.2-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 * 2.2-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 * 1.1,1-Tichloroethane ND 1.0 I EPA 5030C B6B0213 02/02/2016	1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	*F2
Carbon Disulfide ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 **F2 MethylBuyl Ether (MTBE) ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 03:20/220	Methylene Chloride	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Methyl-I-Butyl Ether (MTBE) ND 5.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1.2-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02/02/2016 02/02/2016 03:202/2016 03:46 2.2-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02:02/2016 02:202/2016 13:46 1.1-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02:02/2016 02:02/2016 13:46 1.1-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02:02/2016 02:02/2016 13:46 1.1-Dichloroethane ND 1.0 I EPA 5030C B6B0213 02:02/2016 02:02/2016	Carbon Disulfide	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	*F2
trans-1,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,1-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:462-Butanone (MEK)ND251EPA 5030CB6B021302/02/201602/02/201613:462,2-DichloroetheneND1.01EPA 5030CB6B021302/02/201602/02/201613:46ChloroformND1.01EPA 5030CB6B021302/02/201602/02/201613:46ChloroformND1.01EPA 5030CB6B021302/02/201602/02/201613:46TetrahydrofuranND5.01EPA 5030CB6B021302/02/201602/02/201613:461,1-1richloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,1-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloroethaneND<	Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/016 02/02/2016 13:46 2-Butanone (MEK) ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2,2-Dichloroptropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Cis-1,2-Dichloroptropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Chloroform ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloroptropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroptropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroptropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016	trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
2-Butanone (MEK) ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 cis-1,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Chloroform ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carlon fetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1	1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
2,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 cis-1,2-Dichloroethene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Chloroform ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Tetrahydrofuran ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloroptopene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroptopane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 13:46 1,2-Dichloroptopane ND 1.0 1	2-Butanone (MEK)	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
cis-1,2-Dichloroethene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Chloroform ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Tetrahydrofuran ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 J.1-Dichloropropene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 J.2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 J.2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 J.2-Dichloroptopane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:4	2,2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Chloroform ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Tetrahydrofuran ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,1-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloropropene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloropropane ND 5.	cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Tetrahydrofuran ND 5.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,1-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloropropene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Benzene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromomethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Garibadichloropropene ND 0.50 </td <td>Chloroform</td> <td>ND</td> <td>1.0</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	Chloroform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1,1-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Carbon Tetrachloride ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1-Dichloropropene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Benzene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroptopane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 0ibromomethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 0ibromorethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	Tetrahydrofuran	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Carbon TetrachlorideND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,1-DichloropropeneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BenzeneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46DibromomethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BromodichloromethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46TolueneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46Trins-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02	1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1-DichloropropeneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BenzeneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46DibromomethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BromodichloromethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46Methyl Isobutyl KetoneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46TolueneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroptopeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:462-HexanoneND2.51EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46 <td>Carbon Tetrachloride</td> <td>ND</td> <td>1.0</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Benzene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Trichloroethene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,2-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromomethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Bromodichloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Methyl Isobutyl Ketone ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 0.50 1 <td>1,1-Dichloropropene</td> <td>ND</td> <td>1.0</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2-DichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:46TrichloroetheneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,2-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/201613:46DibromomethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:46BromodichloromethaneND0.501EPA 5030CB6B021302/02/201602/02/201613:46Methyl Isobutyl KetoneND251EPA 5030CB6B021302/02/201602/02/201613:46TolueneND0.501EPA 5030CB6B021302/02/201602/02/201613:46trans-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/201613:462-HexanoneND251EPA 5030CB6B021302/02/201602/02/201613:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/201613:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/201602/02/201613:461,3-Dichloropropane	Benzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
TrichloroetheneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,2-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46DibromomethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BromodichloromethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46Methyl Isobutyl KetoneND251EPA 5030CB6B021302/02/201602/02/2016 13:46cis-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46TolueneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46trans-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:462-HexanoneND251EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/201602/	1.2-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46DibromomethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46BromodichloromethaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46Methyl Isobutyl KetoneND251EPA 5030CB6B021302/02/201602/02/2016 13:46cis-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:46TolueneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:46trans-1,3-DichloropropeneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:462-HexanoneND251EPA 5030CB6B021302/02/201602/02/2016 13:461,1,2-TrichloroethaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND1.01EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/201602/02/2016 13:461,3-DichloropropaneND0.501EPA 5030CB6B021302/02/2016 <t< td=""><td>Trichloroethene</td><td>ND</td><td>1.0</td><td>1</td><td>EPA 5030C</td><td>B6B0213</td><td>02/02/2016</td><td>02/02/2016 13:46</td><td></td></t<>	Trichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Dibromomethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Bromodichloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Methyl Isobutyl Ketone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Cis-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C <t< td=""><td>1.2-Dichloropropane</td><td>ND</td><td>1.0</td><td>1</td><td>EPA 5030C</td><td>B6B0213</td><td>02/02/2016</td><td>02/02/2016 13:46</td><td></td></t<>	1.2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Bromodichloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Methyl Isobutyl Ketone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 cis-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 2.5 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1	Dibromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Methyl Isobutyl Ketone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 cis-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 2.5 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/	Bromodichloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Initial circle ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Toluene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 2.5 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C <td>Methyl Isobutyl Ketone</td> <td>ND</td> <td>25</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Toluene ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 trans-1,3-Dichloropropene ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Tetrachloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloromethane ND 0.50 1 EPA 5030C </td <td>cis-1.3-Dichloropropene</td> <td>ND</td> <td>0.50</td> <td>1</td> <td>EPA 5030C</td> <td>B6B0213</td> <td>02/02/2016</td> <td>02/02/2016 13:46</td> <td></td>	cis-1.3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Indian Indian EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 2-Hexanone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1/2 Dil ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	Toluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
2-Hexanone ND 25 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Tetrachloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	trans-1 3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Indextrolle ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,1,2-Trichloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	2-Hexanone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Tetrachloroethane ND 1.0 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	1 1 2-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
ND ND ND I EPA 5030C B6B0213 02/02/2016 02/02/2016 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 1,3-Dichloropropane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016	Tetrachloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46 12 Dibromochloromethane ND 0.50 1 EPA 5030C B6B0213 02/02/2016 02/02/2016 13:46	1 3-Dichloronronane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
12 Different of the lattice in the second seco	Dibromochloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:40	
1.7-Dibromoethane NI) (150 I EFA 30300 B6B0713 (17/07/2016 13/26	1.2-Dibromoethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	

Client Sample ID MW-2 Lab ID: 6020016-02

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Chlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Ethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
m+p Xylenes	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
o-Xylene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Styrene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Bromoform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Bromobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Naphthalene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 13:46	
Surrogate: 1,2-Dichloroethane-d4	102 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:46	
Surrogate: Toluene-d8	100 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:46	
Surrogate: 4-Bromofluorobenzene	97.6 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 13:46	

Client Sample ID MW-3 Lab ID: 6020016-03

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Chloromethane	ND	2.7	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Bromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Chloroethane	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Acetone	ND	50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Acrylonitrile	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	*F2
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	*F2
Methylene Chloride	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	*F2
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
2.2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Chloroform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Tetrahydrofuran	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Benzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Trichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1.2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Dibromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
cis-1.3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Toluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
trans-1 3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
2-Hexanone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1 1 2-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1 3-Dichloropropage	ND	0.50	- 1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1 2-Dibromoethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	

Client Sample ID MW-3 Lab ID: 6020016-03

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Chlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Ethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
m+p Xylenes	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
o-Xylene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Styrene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Bromoform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Bromobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Naphthalene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:08	
Surrogate: 1,2-Dichloroethane-d4	101 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 14:08	
Surrogate: Toluene-d8	99.6 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 14:08	
Surrogate: 4-Bromofluorobenzene	96.5 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 14:08	

Client Sample ID MW-4 Lab ID: 6020016-04

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Chloromethane	ND	2.7	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Bromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Chloroethane	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Acetone	ND	50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Acrylonitrile	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	*F2
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	*F2
Methylene Chloride	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	*F2
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
2,2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Chloroform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Tetrahydrofuran	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Benzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1.2-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Trichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1.2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Dibromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
cis-1.3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Toluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
trans-1 3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
2-Hexanone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1 1 2-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1 3-Dichloropropane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	

Client Sample ID MW-4 Lab ID: 6020016-04

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Chlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Ethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
m+p Xylenes	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
o-Xylene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Styrene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Bromoform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Bromobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Naphthalene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:30	
Surrogate: 1,2-Dichloroethane-d4	103 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 14:30	
Surrogate: Toluene-d8	100 %	70	0 - 130		B6B0213	02/02/2016	02/02/2016 14:30	
Surrogate: 4-Bromofluorobenzene	99.6 %	7	0 - 130		B6B0213	02/02/2016	02/02/2016 14:30	

Client Sample ID TB Lab ID: 6020016-05

Volatile Organics Method: EPA 8260C

Analyst: JS

	Result	RL					Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Prep Method	Batch	Prepared	Analyzed	Notes
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Chloromethane	ND	2.7	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Bromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Chloroethane	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Acetone	ND	50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Acrylonitrile	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	*F2
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	*F2
Methylene Chloride	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	*F2
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
2,2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Chloroform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Tetrahydrofuran	ND	5.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Benzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Trichloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1.2-Dichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Dibromomethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
cis-1.3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Toluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
trans-1.3-Dichloropropene	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
2-Hexanone	ND	25	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1 1 2-Trichloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1 3-Dichloropropane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1.2-Dibromoethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	

Client Sample ID TB Lab ID: 6020016-05

Volatile Organics Method: EPA 8260C

Analyst: JS

Matrix: W

Analyta	Result	RL	Dilution	Pren Mathad	Ratah	Drangered	Date/Time	Notes
Analyte	(ug/L)	(ug/L)	Dilution		Daten	riepared	Analyzed	THOLES
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Chlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Ethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
m+p Xylenes	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
o-Xylene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Styrene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Bromoform	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Bromobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Naphthalene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B6B0213	02/02/2016	02/02/2016 14:52	
Surrogate: 1,2-Dichloroethane-d4	98.8 %	71	0 - 130		B6B0213	02/02/2016	02/02/2016 14:52	
Surrogate: Toluene-d8	99.5 %	71	0 - 130		B6B0213	02/02/2016	02/02/2016 14:52	
Surrogate: 4-Bromofluorobenzene	98.3 %	70	0 - 130		B6B0213	02/02/2016	02/02/2016 14:52	

QUALITY CONTROL SECTION

Batch B6B0213 - EPA 8260C

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B0213-BLK1)					Prepared: 2/	/2/2016 Analyz	ed: 2/2/2016		
Dichlorodifluoromethane	ND	10							
Chloromethane	ND	2.7							
Vinyl Chloride	ND	1.6							
Bromomethane	ND	1.0							
Chloroethane	ND	5.0							
Trichlorofluoromethane	ND	25							
Acetone	ND	50							
Acrylonitrile	ND	0.50							
Trichlorotrifluoroethane	ND	25							
1.1-Dichloroethene	ND	1.0							
Methylene Chloride	ND	5.0							
Carbon Disulfide	ND	1.0							
Methyl-t-Butyl Ether (MTBE)	ND	5.0							
trans-1,2-Dichloroethene	ND	1.0							
1.1-Dichloroethane	ND	1.0							
2-Butanone (MEK)	ND	2.5							
2 2-Dichloropropane	ND	1.0							
cis-1 2-Dichloroethene	ND	1.0							
Chloroform	ND	1.0							
Tetrahydrofuran	ND	5.0							
1 1 1-Trichloroethane	ND	1.0							
Carbon Tetrachloride	ND	1.0							
1 1-Dichloropropene	ND	1.0							
Benzene	ND	1.0							
1.2-Dichloroethane	ND	1.0							
Trichloroethene	ND	1.0							
1.2 Dichloropropage	ND	1.0							
Dibromomethane	ND	1.0							
Bromodichloromethane	ND	0.50							
Mathyl Isobutyl Katona	ND	25							
cis 1.3 Dichloropropene	ND	0.50							
Toluene	ND	1.0							
trans 1.3 Dichloropropene	ND	0.50							
2-Hevanone		25							
1 1 2-Trichloroethane	ND	1.0							
Tetrachloroethene	ND	1.0							
1 3-Dichloronronane	ND	0.50							
Dibromochloromethane		0.50							
1.2-Dibromoethane	ND	0.50							
trans-1 4-Dichloro-2-Butene	ND	10							
Chlorobenzene	ND	10							
1 1 1 2-Tetrachloroethane	ND	1.0							
Fthylbenzene		1.0							
m+n Xylenes		1.0							
o Yulene		1.0							
Sturana		1.0							
Bromoform		1.0							
Isonronylbenzena		1.0							
1 1 2 2 Tatrachlaracthara		1.0							
1,1,2,2-1etrachioroethane	IND	0.50							

CET # : 6020016

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B0213-BLK1) - Continued					Prepared: 2/	2/2016 Analyze	ed: 2/2/2016		
Bromobenzene	ND	1.0							
1,2,3-Trichloropropane	ND	1.0							
n-Propylbenzene	ND	1.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
sec-Butylbenzene	ND	1.0							
1.3-Dichlorobenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
1.4-Dichlorobenzene	ND	1.0							
1.2-Dichlorobenzene	ND	1.0							
n-Butylbenzene	ND	1.0							
1.2-Dibromo-3-Chloropropane	ND	1.0							
1.2.4-Trichlorobenzene	ND	1.0							
Hexachlorobutadiene	ND	0.45							
Naphthalene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
Surrogate: 1 2-Dichloroethane-d4					106	70 - 130			
Surrogate: Toluene-d8					101	70 - 130			
Surrogate: 4-Bromofluorobenzene					98.4	70 - 130			
LCS (B6B0213-BS1)					Prepared: 2/	2/2016 Analyze	ed: 2/2/2016		
Dichlorodifluoromethane	51.5	10	50,000		103	70 130			
Chloromethane	51.5 45.4	27	50,000		90.9	70 - 130			
Vinyl Chloride	4J.4 50.3	2.7	50.000		90.9 101	70 - 130			
Bromomethane	50.5 47 1	1.0	50,000		94.1	70 - 130			
Chloroethane	47.1	5.0	50,000		94.1	70 - 130			
Trichlorofluoromothano	49.7 61.8	25	50.000		124	70 - 130			
A cetone	105	23 50	100.000		124	70 - 130			
Accolore	103 54 7	0.50	50,000		100	70 - 130			
Trichlorotrifluoroothana	J4.7 79.4	0.50	50.000		109	70 - 130			п
1 1 Dichloroethene	78.4	1.0	50,000		157	70 - 130			и П
Mathylana Chlarida	55.5	5.0	50.000		134	70 - 130			11
Carbon Digulfido	95.5 95.1	5.0	50.000		170	70 - 130			п
Mathyl t Putyl Ether (MTPE)	63.1 57.1	5.0	50.000		170	70 - 130			п
trans 1.2 Dichloroethene	50.7	5.0 1.0	50,000		114	70 - 130			
1 1-Dichloroethane	59.0	1.0	50,000		119	70 - 130			
2-Butanone (MEK)	108	25	100.000		108	70 - 130			
2 2-Dichloropropage	59.8	1.0	50,000		108	70 - 130			
cis 1.2 Dichloroethene	56.4	1.0	50.000		113	70 130			
Chloroform	53.3	1.0	50.000		107	70 - 130			
Tetrahydrofuran	56.3	5.0	50.000		113	70 - 130			
1 1 1-Trichloroethane	50.5 52 7	1.0	50,000		105	70 - 130			
Carbon Tetrachloride	54.8	1.0	50.000		105	70 - 130			
1 1-Dichloronronene	55.6	1.0	50.000		110	70 - 130			
Benzene	53.0	1.0	50.000		107	70 - 130			
1.2-Dichloroethane	50.7	1.0	50.000		107	70 - 130			
Trichloroethane	5/ 2	1.0	50.000		101	70 - 130			
1 2-Dichloropropage	54.5 54.1	1.0	50.000		109	70 - 130			
Dibromomethane	59 G	1.0	50.000		105	70 - 130			
Bromodichloromethana	52.0	1.0	50.000		105	70 - 130			
Bromodicinoromethalle	52.5	0.50	50.000		105	70 - 130			

CET # : 6020016

Project: Riverside Apts, Ansonia

Project Number: 15.127/001

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B6B0213-BS1) - Continued					Prepared: 2	/2/2016 Analyze	ed: 2/2/2016		
Methyl Isobutyl Ketone	101	25	100.000		101	70 - 130			
cis-1,3-Dichloropropene	50.1	0.50	50.000		100	70 - 130			
Toluene	52.6	1.0	50.000		105	70 - 130			
trans-1,3-Dichloropropene	47.4	0.50	50.000		94.8	70 - 130			
2-Hexanone	106	25	100.000		106	70 - 130			
1,1,2-Trichloroethane	52.3	1.0	50.000		105	70 - 130			
Tetrachloroethene	52.4	1.0	50.000		105	70 - 130			
1,3-Dichloropropane	50.2	0.50	50.000		100	70 - 130			
Dibromochloromethane	54.6	0.50	50.000		109	70 - 130			
1,2-Dibromoethane	52.1	0.50	50.000		104	70 - 130			
trans-1,4-Dichloro-2-Butene	62.4	10	50.000		125	70 - 130			
Chlorobenzene	53.2	1.0	50.000		106	70 - 130			
1,1,1,2-Tetrachloroethane	50.7	1.0	50.000		101	70 - 130			
Ethylbenzene	50.1	1.0	50.000		100	70 - 130			
m+p Xylenes	104	1.0	100.000		104	70 - 130			
o-Xylene	52.9	1.0	50.000		106	70 - 130			
Styrene	51.4	1.0	50.000		103	70 - 130			
Bromoform	55.9	1.0	50.000		112	70 - 130			
Isopropylbenzene	51.8	1.0	50.000		104	70 - 130			
1,1,2,2-Tetrachloroethane	54.2	0.50	50.000		108	70 - 130			
Bromobenzene	51.7	1.0	50.000		103	70 - 130			
1,2,3-Trichloropropane	51.3	1.0	50.000		103	70 - 130			
n-Propylbenzene	51.5	1.0	50.000		103	70 - 130			
2-Chlorotoluene	51.8	1.0	50.000		104	70 - 130			
4-Chlorotoluene	49.7	1.0	50.000		99.3	70 - 130			
1,3,5-Trimethylbenzene	51.4	1.0	50.000		103	70 - 130			
tert-Butylbenzene	51.3	1.0	50.000		103	70 - 130			
1,2,4-Trimethylbenzene	51.4	1.0	50.000		103	70 - 130			
sec-Butylbenzene	52.9	1.0	50.000		106	70 - 130			
1.3-Dichlorobenzene	51.9	1.0	50.000		104	70 - 130			
4-Isopropyltoluene	52.7	1.0	50.000		105	70 - 130			
1.4-Dichlorobenzene	50.9	1.0	50.000		102	70 - 130			
1.2-Dichlorobenzene	51.7	1.0	50.000		103	70 - 130			
n-Butylbenzene	51.6	1.0	50.000		103	70 - 130			
1.2-Dibromo-3-Chloropropane	57.3	1.0	50.000		115	70 - 130			
1,2,4-Trichlorobenzene	55.4	1.0	50.000		111	70 - 130			
Hexachlorobutadiene	46.6	0.45	50.000		93.1	70 - 130			
Naphthalene	56.9	1.0	50.000		114	70 - 130			
1,2,3-Trichlorobenzene	60.6	1.0	50.000		121	70 - 130			
Surrogate: 1,2-Dichloroethane-d4					103	70 - 130			
Surrogate: Toluene-d8					101	70 - 130			
Surrogate: 4-Bromofluorobenzene					101	70 - 130			

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

1 Lat

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. 80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention time, calculate relative response, and quantify analytes of interest.
Surrogate Recovery	The % recovery for non-tarer organic compounds that are spiked into all samples. Used to determine method performance.
Continuing Calibration	An analytical standard analyzed with each set of samples to verify initial calibration of the system.
Batch	Samples that are analyzed together with the same method, sequence and lot of reagents within the same
	time period.
ND	Not detected
RL	Reporting Limit
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high
	concentration of target compounds.
Duplicate	Result from the duplicate analysis of a sample.
Result	Amount of analyte found in a sample.
Spike Level	Amount of analyte added to a sample
Matrix Spike Result	Amount of analyte found including amount that was spiked.
Matrix Spike Dup	Amount of analyte foun in duplicate spikes including amount that was spike.
Matrix Spike % Recovery	% Recovery of spiked amount in sample.
Matrix Spike Dup % Recovery	% Recovery of spiked duplicate amount in sample.
RPD	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
Blank	Method Blank that has been taken through all steps of the analysis.
LCS % Recovery	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
Recovery Limits	A range within which specified measurements results must fall to be compliant.
CC	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York Certification 11982 Rhode Island Certification 199

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Complete Environmental Testing, Inc.	Client: Payne Enviro	onmental					
Project Location:	Riverside Apts, Ansonia	Project Number:	15.127/001					
Laboratory Sample 1	(D(s):	Sample Date(s):						
6020016-01 thru 60200	016-05	01/31/2016						
List RCP Methods Us	sed:	CET #: 6020016						
EPA 8260C								

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes No
1A	Were the method specified preservation and holding time requirements met?	Yes No
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	yes □ No N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes 🖌 No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes No
5b	b) Were these reporting limits met?	Yes No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes 🖌 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information

must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

re: Lift

Position: Laboratory Director

Printed Name: David Ditta

Date: 02/03/2016

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

RCP Case Narrative

4- See Exceptions Report Below

7- Project specific QC was not requested by the client.

4- Exceptions Report

				Recovery	Batch/Sequence
QC Туре	Exception	Result	RPD	(%)	Sample ID
LCS	High			154	B6B0213
LCS	High			170	B6B0213
LCS	High			157	B6B0213
	QC Type LCS LCS LCS	QC TypeExceptionLCSHighLCSHighLCSHigh	QC TypeExceptionResultLCSHighLCSHighLCSHigh	QC TypeExceptionResultRPDLCSHighLCSHighLCSHigh	QC TypeExceptionResultRPD(%)LCSHigh154LCSHigh170LCSHigh157

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
B6B0213	S6B0303	6020016-01	MW-1	EPA 8260C	Water	01/31/2016
B6B0213	S6B0303	6020016-02	MW-2	EPA 8260C	Water	01/31/2016
B6B0213	S6B0303	6020016-03	MW-3	EPA 8260C	Water	01/31/2016
B6B0213	S6B0303	6020016-04	MW-4	EPA 8260C	Water	01/31/2016
B6B0213	S6B0303	6020016-05	TB	EPA 8260C	Water	01/31/2016

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 8260C in Water	
Dichlorodifluoromethane	CT,NY
Chloromethane	CT,NY
Vinyl Chloride	CT,NY
Bromomethane	CT,NY
Chloroethane	CT,NY
Trichlorofluoromethane	CT,NY
Acetone	CT,NY
Acrylonitrile	CT,NY
Trichlorotrifluoroethane	CT,NY
1,1-Dichloroethene	CT,NY
Methylene Chloride	CT,NY
Carbon Disulfide	CT,NY
Methyl-t-Butyl Ether (MTBE)	CT,NY
trans-1,2-Dichloroethene	CT,NY
1,1-Dichloroethane	CT,NY
2-Butanone (MEK)	CT,NY
2,2-Dichloropropane	CT,NY
cis-1,2-Dichloroethene	CT,NY
Chloroform	CT,NY
Tetrahydrofuran	СТ
1,1,1-Trichloroethane	CT,NY
Carbon Tetrachloride	CT,NY
1,1-Dichloropropene	CT,NY
Benzene	CT,NY
1,2-Dichloroethane	CT,NY
Trichloroethene	CT,NY
1,2-Dichloropropane	CT,NY
Dibromomethane	CT,NY
Bromodichloromethane	CT,NY
Methyl Isobutyl Ketone	CT,NY
cis-1,3-Dichloropropene	CT,NY
Toluene	CT,NY
trans-1,3-Dichloropropene	CT,NY
2-Hexanone	CT,NY
1,1,2-Trichloroethane	CT,NY
Tetrachloroethene	CT,NY
1,3-Dichloropropane	CT,NY
Dibromochloromethane	CT,NY
1,2-Dibromoethane	CT,NY
trans-1,4-Dichloro-2-Butene	CT,NY
Chlorobenzene	CT,NY
1,1,1,2-Tetrachloroethane	CT,NY
Ethylbenzene	CT,NY
m+p Xylenes	CT,NY
o-Xylene	CT,NY
Styrene	CT,NY
Bromoform	CT,NY
Isopropylbenzene	CT,NY
1,1,2,2-Tetrachloroethane	CT,NY

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
EPA 8260C in Water		
Bromobenzene	СТ	
1,2,3-Trichloropropane	CT,NY	
n-Propylbenzene	CT,NY	
2-Chlorotoluene	CT,NY	
4-Chlorotoluene	CT,NY	
1,3,5-Trimethylbenzene	CT,NY	
tert-Butylbenzene	CT,NY	
1,2,4-Trimethylbenzene	CT,NY	
sec-Butylbenzene	CT,NY	
1,3-Dichlorobenzene	CT,NY	
4-Isopropyltoluene	CT,NY	
1,4-Dichlorobenzene	CT,NY	
1,2-Dichlorobenzene	CT,NY	
n-Butylbenzene	CT,NY	
1,2-Dibromo-3-Chloropropane	CT,NY	
1,2,4-Trichlorobenzene	CT,NY	
Hexachlorobutadiene	CT,NY	
Naphthalene	CT,NY	
1,2,3-Trichlorobenzene	СТ	

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
СТ	Connecticut Public Health	PH0116	09/30/2016
NY	New York Certification (NELAC)	11982	04/01/2016

* Additional charge may apply. ** TAT begin	N. BINE npays	NEW HAVEN	OT WINN ST	Address	Client / Reporting Information	RELINQUISTED BY: 1 OATETTIN	RELINQUISHED BY: CATE/TIM	Soil VOCs Only (M=MeOH B= Bisulfate	CONTAINER TYPE (P-Plastic, G-Glass, V	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SC			MW-4	MLW ~ 3	men "	MW-1	Sample ID Dep (Un	Stratford, CT 06615 Fax: (Bottle Request e-mail: bottleorders	80 Lunes Drive Tel: ()			6020016
s when the samples are received at the Lab and	1 & payment p. S.m.		Zin	inthe us		ne Received by:	NCHO MUM	e W=Water F= Empty E=Encore)	/-Vial, O-Other)	D4, Na-NaOH, C=Cool, O-Other) C1, C			 10900 1	5530	1 1 215 1 1 1	1/31/16 orus bw	its) Date/Time (specify) Same Date 2-3 Day: Std (5-7 Date 2-3 Day:	203) 377-9952 A=Air Time ** 203) 377-9952 s=Soil (check one) @cetlabs.com war t @cetlabs.com var * @cetlabs.com var * @cetlabs.com var *	203) 277 008/ Matrix Turnaround	COMPLETE ENVIRONMENTAL TESTING, INC.		
all issues are resolved. TAT for samp	Laboratory Certification Needed (chec	Data Report PDF DEDD	QA/QC Std	Project KUSRSIDE	Project Contact NEW R	TAX EXE	NOTES:										8260 CT 8260 Arr 8260 Ha 624 CT ETP 8270 CT 8270 PN PCBs Pesticide	List logens H List List JAS	Organics			
Evidence of <u>N</u> SHEE Cooling: <u>N</u> SHEE		- Specify Format	□ Site Specific (MS/MSD) *	Collector(s) NO (277) Project #: 12	Project Information	EMPT PROJECT											8 RCRA TOTAL TCLP SPLP Field Fil Lab To F	tered	Tetals (check all that apply)	CET:	CTODY Client	Volatile Soil
r OF / OF / The next business day. REV.06/14]RI □ MA		ACP Pkg * ZDQAW *	PAF									2		2	2	TOTAL : NOTE #	# OF CONT.	vdditional Analysis	Page	te and Time in Freezer	s Only: